93 research outputs found

    Aldosterone signaling through transient receptor potential melastatin 7 cation channel (TRPM7) and its α-kinase domain

    Get PDF
    We demonstrated a role for the Mg2 + transporter TRPM7, a bifunctional protein with channel and α-kinase domains, in aldosterone signaling. Molecular mechanisms underlying this are elusive. Here we investigated the function of TRPM7 and its α-kinase domain on Mg2 + and pro-inflammatory signaling by aldosterone. Kidney cells (HEK-293) expressing wild-type human TRPM7 (WThTRPM7) or constructs in which the α-kinase domain was deleted (ΔKinase) or rendered inactive with a point mutation in the ATP binding site of the α-kinase domain (K1648R) were studied. Aldosterone rapidly increased [Mg2 +]i and stimulated NADPH oxidase-derived generation of reactive oxygen species (ROS) in WT hTRPM7 and TRPM7 kinase dead mutant cells. Translocation of annexin-1 and calpain-II and spectrin cleavage (calpain target) were increased by aldosterone in WT hTRPM7 cells but not in α-kinase-deficient cells. Aldosterone stimulated phosphorylation of MAP kinases and increased expression of pro-inflammatory mediators ICAM-1, Cox-2 and PAI-1 in Δkinase and K1648R cells, effects that were inhibited by eplerenone (mineralocorticoid receptor (MR) blocker). 2-APB, a TRPM7 channel inhibitor, abrogated aldosterone-induced Mg2 + responses in WT hTRPM7 and mutant cells. In 2-APB-treated ΔKinase and K1648R cells, aldosterone-stimulated inflammatory responses were unchanged. These data indicate that aldosterone stimulates Mg2 + influx and ROS production in a TRPM7-sensitive, kinase-insensitive manner, whereas activation of annexin-1 requires the TRPM7 kinase domain. Moreover TRPM7 α-kinase modulates inflammatory signaling by aldosterone in a TRPM7 channel/Mg2 +-independent manner. Our findings identify novel mechanisms for non-genomic actions of aldosterone involving differential signaling through MR-activated TRPM7 channel and α-kinase

    Post-Training Dephosphorylation of eEF-2 Promotes Protein Synthesis for Memory Consolidation

    Get PDF
    Memory consolidation, which converts acquired information into long-term storage, is new protein synthesis-dependent. As protein synthesis is a dynamic process that is under the control of multiple translational mechanisms, however, it is still elusive how these mechanisms are recruited in response to learning for memory consolidation. Here we found that eukaryotic elongation factor-2 (eEF-2) was dramatically dephosphorylated within 0.5–2 hr in the hippocampus and amygdala of mice following training in a fear-conditioning test, whereas genome-wide microarrays did not reveal any significant change in the expression level of the mRNAs for translational machineries or their related molecules. Moreover, blockade of NMDA receptors with MK-801 immediately following the training significantly impeded both the post-training eEF-2 dephosphorylation and memory retention. Notably, with an elegant sophisticated transgenic strategy, we demonstrated that hippocampus-specific overexpression of eEF-2 kinase, a kinase that specifically phosphorylates and hence inactivates eEF-2, significantly inhibited protein synthesis in the hippocampus, and this effects was more robust during an “ongoing” protein synthesis process. As a result, late phase long-term potentiation (L-LTP) in the hippocampus and long-term hippocampus-dependent memory in the mice were significantly impaired, whereas short-term memory and long-term hippocampus-independent memory remained intact. These results reveal a novel translational underpinning for protein synthesis pertinent to memory consolidation in the mammalian brain

    The alpha-kinase family: an exceptional branch on the protein kinase tree

    Get PDF
    The alpha-kinase family represents a class of atypical protein kinases that display little sequence similarity to conventional protein kinases. Early studies on myosin heavy chain kinases in Dictyostelium discoideum revealed their unusual propensity to phosphorylate serine and threonine residues in the context of an alpha-helix. Although recent studies show that some members of this family can also phosphorylate residues in non-helical regions, the name alpha-kinase has remained. During evolution, the alpha-kinase domains combined with many different functional subdomains such as von Willebrand factor-like motifs (vWKa) and even cation channels (TRPM6 and TRPM7). As a result, these kinases are implicated in a large variety of cellular processes such as protein translation, Mg2+ homeostasis, intracellular transport, cell migration, adhesion, and proliferation. Here, we review the current state of knowledge on different members of this kinase family and discuss the potential use of alpha-kinases as drug targets in diseases such as cancer

    The alpha-kinases TRPM6 and TRPM7, but not eEF-2 kinase, phosphorylate the assembly domain of myosin IIA, IIB and IIC.

    Get PDF
    Contains fulltext : 70817.pdf (publisher's version ) (Closed access)TRPM6 and TRPM7 encode channel-kinases. While these channels share electrophysiological properties and cellular functions, TRPM6 and TRPM7 are non-redundant genes raising the possibility that the kinases have distinct substrates. Here, we demonstrate that TRPM6 and TRPM7 phosphorylate the assembly domain of myosin IIA, IIB and IIC on identical residues. Whereas phosphorylation of myosin IIA is restricted to the coiled-coil domain, TRPM6 and TRPM7 also phosphorylate the non-helical tails of myosin IIB and IIC. TRPM7 does not phosphorylate eukaryotic elongation factor-2 (eEF-2) and myosin II is a poor substrate for eEF-2 kinase. In conclusion, TRPM6 and TRPM7 share exogenous substrates among themselves but not with functionally distant alpha-kinases

    Phosphorylation of Annexin A1 by TRPM7 Kinase: A Switch Regulating the Induction of an α-Helix

    Get PDF
    TRPM7 is an unusual bifunctional protein consisting of an α-kinase domain fused to a TRP ion channel. Previously, we have identified annexin A1 as a substrate for TRPM7 kinase and found that TRPM7 phosphorylates annexin A1 at Ser5 within the N-terminal α-helix. Annexin A1 is a Ca 2+ -dependent membrane binding protein, which has been implicated in membrane trafficking and reorganization. The N-terminal tail of annexin A1 can interact with either membranes or S100A11 protein, and it adopts the conformation of an amphipathic α-helix upon these interactions. Moreover, the existing evidence indicates that the formation of an α-helix is essential for these interactions. Here we show that phosphorylation at Ser5 prevents the N-terminal peptide of annexin A1 from adopting an α-helical conformation in the presence of membrane-mimetic micelles as well as phospholipid vesicles. We also show that phosphorylation at Ser5 dramatically weakens the binding of the peptide to S100A11. Our data suggest that phosphorylation at Ser5 regulates the interaction of annexin A1 with membranes as well as S100A11 protein

    Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes

    No full text
    Double-stranded RNA interference (RNAi) is an effective method for disrupting expression of specific genes in Caenorhabditis elegans and other organisms 1-5 . Applications of this reverse-genetics tool, however, are somewhat restricted in nematodes because introduced dsRNA is not stably inherited 5 . Another difficulty is that RNAi disruption of late-acting genes has been generally less consistent than that of embryonically expressed genes, perhaps because the concentration of dsRNA becomes lower as cellular division proceeds or as developmental time advances 1 . In particular, some neuronally expressed genes appear refractory to dsRNA-mediated interference. We sought to extend the applicability of RNAi by in vivo expression of heritable inverted-repeat (IR) genes. We assayed the efficacy of in vivo-driven RNAi in three situations for which heritable, inducible RNAi would be advantageous: (i) production of large numbers of animals deficient for gene activities required for viability or reproduction; (ii) generation of large populations of phenocopy mutants for biochemical analysis; and (iii) effective gene inactivation in the nervous system. We report that heritable IR genes confer potent and specific gene inactivation for each of these applications. We suggest that a similar strategy might be used to test for dsRNA interference effects in higher organisms in which it is feasible to construct transgenic animals, but impossible to directly or transiently introduce high concentrations of dsRNA

    Phosphorylation of tropomodulin1 contributes to the regulation of actin filament architecture in cardiac muscle

    No full text
    Tropomodulin1 (Tmod1) is an actin-capping protein that plays an important role in actin filament pointed-end dynamics and length in striated muscle. No mechanisms have been identified to explain how Tmod1's functional properties are regulated. The purpose of this investigation was to explore the functional significance of the phosphorylation of Tmod1 at previously identified Thr54. Rat cardiomyocytes were assessed for phosphorylation of Tmod1 using Pro-Q Diamond staining and (32)P labeling. Green fluorescent protein-tagged phosphorylation-mimic (T54E) and phosphorylation-deficient (T54A) versions of Tmod1 were expressed in cultured cardiomyocytes, and the ability of these mutants to assemble and restrict actin lengths was observed. We report for the first time that Tmod1 is phosphorylated endogenously in cardiomyocytes, and phosphorylation at Thr54 causes a significant reduction in the ability of Tmod1 to assemble to the pointed end compared with that of the wild type (WT; 48 vs. 78%, respectively). In addition, overexpression of Tmod1-T54E restricts actin filament lengths by only ∼3%, whereas Tmod1-WT restricts the lengths significantly by ∼8%. Finally, Tmod1-T54E altered the actin filament-capping activity in polymerization assays. Taken together, our data suggest that pointed-end assembly and Tmod1's thin filament length regulatory function are regulated by its phosphorylation state.—Bliss, K. T., Tsukada, T., Novak, S. M., Dorovkov, M. V., Shah, S. P., Nworu, C., Kostyukova, A. S., Gregorio, C. C. Phosphorylation of tropomodulin1 contributes to the regulation of actin filament architecture in cardiac muscle

    Phosphorylation of tropomodulin1 contributes to the regulation of actin filament architecture in cardiac muscle

    No full text
    Tropomodulin1 (Tmod1) is an actin-capping protein that plays an important role in actin filament pointed-end dynamics and length in striated muscle. No mechanisms have been identified to explain how Tmod1's functional properties are regulated. The purpose of this investigation was to explore the functional significance of the phosphorylation of Tmod1 at previously identified Thr54. Rat cardiomyocytes were assessed for phosphorylation of Tmod1 using Pro-Q Diamond staining and (32)P labeling. Green fluorescent protein-tagged phosphorylation-mimic (T54E) and phosphorylation-deficient (T54A) versions of Tmod1 were expressed in cultured cardiomyocytes, and the ability of these mutants to assemble and restrict actin lengths was observed. We report for the first time that Tmod1 is phosphorylated endogenously in cardiomyocytes, and phosphorylation at Thr54 causes a significant reduction in the ability of Tmod1 to assemble to the pointed end compared with that of the wild type (WT; 48 vs. 78%, respectively). In addition, overexpression of Tmod1-T54E restricts actin filament lengths by only ∼3%, whereas Tmod1-WT restricts the lengths significantly by ∼8%. Finally, Tmod1-T54E altered the actin filament-capping activity in polymerization assays. Taken together, our data suggest that pointed-end assembly and Tmod1's thin filament length regulatory function are regulated by its phosphorylation state
    corecore