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Abstract TRPM6 and TRPM7 encode channel-kinases. While
these channels share electrophysiological properties and cellular
functions, TRPM6 and TRPM7 are non-redundant genes raising
the possibility that the kinases have distinct substrates. Here, we
demonstrate that TRPM6 and TRPM7 phosphorylate the
assembly domain of myosin IIA, IIB and IIC on identical resi-
dues. Whereas phosphorylation of myosin IIA is restricted to
the coiled-coil domain, TRPM6 and TRPM7 also phosphorylate
the non-helical tails of myosin IIB and IIC. TRPM7 does not
phosphorylate eukaryotic elongation factor-2 (eEF-2) and myo-
sin II is a poor substrate for eEF-2 kinase. In conclusion,
TRPM6 and TRPM7 share exogenous substrates among them-
selves but not with functionally distant a-kinases.

Structured summary:

MINT-6700314:

GNA1 (uniprotkb:Q96EK6) and GNA1 (uniprotkb:Q96EK6)

bind (MI:0407) by X-ray crystallography (MI:0114)

� 2008 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: a-Kinase; TRPM6; TRPM7; Myosin II;
Phosphorylation
1. Introduction

TRPM6 and TRPM7 are bifunctional proteins encoding a

TRP cation channel fused to an a-kinase and represent the

only two proteins in the mammalian genome with this partic-

ular architecture. A critical issue in understanding the biolog-
Abbreviations: eEF-2, eukaryotic elongation factor-2; LC-MS/MS
nanoliquid chromatography–tandem mass spectrometry; PTM, pos
translational modification; WT, wild-type
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t-

eties. Pu
ical function of TRPM6 and TRPM7 is to identify the sub-

strates for each kinase.

Within the mammalian a-kinase family, TRPM6 and

TRPM7 are most closely related to each other. In addition

to similarity in primary structure, TRPM6 and TRPM7 have

comparable electrophysiological properties as well as cellular

functions. Physiological Mg2+ and Mg2+-nucleotide concentra-

tions inhibit TRPM6 and TRPM7 channels [1,2] and these

channels play a key role in Mg2+ homeostasis [3–5]. However,

TRPM6 and TRPM7 also have unique roles in human biol-

ogy. Overexpression of TRPM6 cannot rescue cell growth ar-

rest due to ablation of TRPM7 [6] and the disease familial

hypomagnesemia with secondary hypocalcemia, which is

caused by mutations of TRPM6, progresses despite the expres-

sion of TRPM7 in both the intestine and kidney [3,4]. Thus,

TRPM6 and TRPM7 have unique functions even though they

share many structural and electrophysiological features. Are

these functional differences related to a distinct set of sub-

strates for each kinase?

In contrast to channel function, little is known about the

substrates for TRPM6 and TRPM7 kinases. To date, no exog-

enous substrates have been identified for TRPM6, whereas

TRPM7 phosphorylates annexin I and myosin IIA heavy

chain [7–9]. In addition to myosin IIA, mammalian cells also

express myosin IIB and IIC. These three non-muscle myosin

II isoforms are well conserved throughout the entire protein

and share certain cellular functions but there is increasing evi-

dence for non-redundant roles for each isoform [10]. Whether

TRPM7 phosphorylates the heavy chains of all three myosin II

isoforms remains unknown. Therefore, we compared the sub-

strate specificity of TRPM6, TRPM7 and a functionally dis-

tant a-kinase, eukaryotic elongation factor-2 (eEF-2) kinase,

by assessing the phosphorylation of non-muscle myosin IIA,

IIB and IIC.
2. Materials and methods

2.1. Constructs
Cloning of wild-type (WT) and kinase-dead HA-TRPM7-C and WT

HA-TRPM6-C in pcDNA3, eEF-2 kinase in pGEX-2T and the
TRPM7 kinase domain (TRPM7-cat) in pMAL-p2x were previously
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Phosphorylation of myosin IIA, IIB and IIC heavy chains by TRPM7. (A) A schematic diagram of the regions of myosin IIA, IIB and IIC
heavy chains expressed as GST-fusion proteins. The start and end amino acid is indicated on either side of the line. Above the line is the total number
of threonine and serine residues within the fragment. (B) TRPM7 phosphorylates the COOH terminus of myosin IIA, IIB and IIC heavy chains. Top,
coomassie blue stained gel; middle, autoradiogram of GST-myosin II; bottom, autoradiogram of autophosphorylated TRPM7. (C) Quantification of
myosin II phosphorylation by TRPM7. The level of 32P incorporation after a 30 min incubation with TRPM7 is reported relative to the degree of
myosin IIA phosphorylation which was set to 1. (D) Deletion of the non-helical tail from the COOH terminus of myosin IIB and IIC heavy chains
reduces their phosphorylation to levels observed in myosin IIA. Top, coomassie blue stained gel; middle, autoradiogram of GST-myosin II; bottom,
autoradiogram of autophosphorylated TRPM7.

2994 K. Clark et al. / FEBS Letters 582 (2008) 2993–2997
described [11–13]. GST-myosin IIA, IIB and IIC constructs (Fig. 1A)
were generated by inserting PCR products into the BamHI–EcoRI sites
in the pGEX-1N vector. All constructs were verified by DNA sequenc-
ing.

2.2. Cell culture
HEK293 cells were cultured in DMEM medium with 10% FCS.

Cells were transfected using lipofectamine (Roche).

2.3. Purification of recombinant proteins
GST-myosin II proteins were expressed in Escherichia coli and puri-

fied by affinity chromatography on a glutathione-sepharose column
using standard methods. HA-TRPM6-C and HA-TRPM7-C kinases
were purified from mammalian cells by immunoprecipitation [11].
TRPM7-cat, eEF-2 kinase and eEF-2 were purified as previously de-
scribed [12,13]. The identity and integrity of the recombinant proteins
were verified by mass spectrometry.

2.4. In vitro kinase assays
TRPM6 and TRPM7 kinases (20 ng) were dissolved in 50 ll IVK

buffer (50 mM HEPES, pH 7.0, 4 mM MnCl2, 2 mM DTT) with
2 lg of GST-fusion protein. Kinase reactions were initiated by adding
0.1 mM ATP in combination with 5 lCi of [c-32P]ATP and allowed to
proceed for 30 min at 30 �C. Activity of eEF-2K was assayed as previ-
ously described [12]. The reactions were stopped by adding Laemmli
buffer containing 40 mM EDTA and subjected to SDS–PAGE. Phos-
phorylated proteins were detected by autoradiography and quantified
by phosphorimager analysis.

2.5. Mass spectrometry
Peptide identification experiments were performed using a nano-

HPLC Agilent 1100 nanoflow system connected online to a 7-T linear
ion trap Ion Cyclotron Resonance Fourier Transform mass spectrom-
eter (Thermo Fisher, Bremen, Germany). Verification and site map-
ping of phosphorylated peptides was performed using the post-
translational modification (PTM) algorithm implemented in MSQuant
according to the procedure of Olsen et al. [14]. Phosphopeptides were
identified with a 99%-significance threshold when the sum of the Mas-
cot and PTM score was higher than 28 [14]. The delta PTM score, the
difference between the highest and second highest PTM score, was set
to be larger than 8.0 to exclusively report peptides with a mapped
phosphorylation site. As a final verification step, peptides containing
phosphorylation sites occurring only once or twice were verified by
manual inspection of the MS2 and MS3 spectra.
3. Results

TRPM7 phosphorylates the COOH extremity of the myosin

IIA heavy chain [9]. To examine whether TRPM7 also phos-

phorylates myosin IIB and IIC heavy chains, regions homolo-

gous to myosin IIA were purified as GST-fusion proteins (Fig.

1A). Incubation of these proteins with TRPM7 led to the phos-

phorylation of all three myosin II isoforms (Fig. 1B). Like

myosin IIA, the phosphorylation sites in the myosin IIB and

IIC heavy chains are located within the COOH terminus since

upstream regions of the coiled-coil domain were not phosphor-

ylated by TRPM7. However, after a 30 min reaction, 32P

incorporation by TRPM7 into myosin IIB and IIC was

approximately 10-fold greater than for myosin IIA (Fig. 1C).

Sequence alignment of the myosin II isoforms revealed that

the helical tail is highly conserved between all three isoforms

but the non-helical tail differs significantly in length and se-

quence (see Fig. 2B). The non-helical tails of myosin IIB and

IIC contain a short stretch of amino acids rich in serines and

threonines that is absent in the myosin IIA isoform. We there-

fore generated GST-fusion proteins where the helical and non-

helical tails were separated from one another. The myosin IIB

and IIC non-helical tails were phosphorylated by TRPM7,

whereas the myosin IIA non-helical tail was not phosphory-

lated (Fig. 1D). Moreover, removal of the non-helical tail from

the COOH terminus of myosin IIB and IIC reduced the levels

of phosphorylation to those observed in myosin IIA (Fig. 1D).

Thus, differential phosphorylation of the non-helical tail by



Fig. 2. Mapping of TRPM7 phosphorylation sites in myosin IIA, IIB and IIC heavy chains by nanoLC-MS/MS. (A) A representative MS2 and MS3

spectra for a myosin IIB peptide phosphorylated on Ser-1935 (m/z observed of parent ion was 537.7342, mass accuracy 0.38 ppm, +2 charge state; NL
indicates neutral loss of H3PO4 which triggers acquisition of MS3 spectrum). The b+-ion series is indicated in red, whereas the y+-ion series is blue. (B)
Alignment of the COOH termini of myosin IIA, IIB and IIC heavy chains. The helical tail is in normal font and the non-helical tail in italic. Residues
phosphorylated by TRPM7 are in bold and underlined.
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TRPM7 accounts for the differences in phosphorylation of the

myosin II isoforms.

TRPM7 phosphorylates mainly serines in myosin IIA and

IIB but threonines in myosin IIC (data not shown). We

mapped the phosphorylation sites in all three non-muscle iso-

forms by mass spectrometry (Fig. 2 and Supplemental Data).

TRPM7 phosphorylates Thr1800, Ser1803 and Ser1808 in

the coiled-coil domain of myosin IIA. This part of the heavy

chain is also phosphorylated in myosin IIB and IIC. In con-

trast to Ser1803, which is only conserved in myosin IIB

(S1812), Ser1808 is conserved and phosphorylated in both

myosin IIB (T1817) and IIC (T1833). In addition to the

coiled-coil domain, TRPM7 phosphorylates numerous serines

in the myosin IIB and threonines in the myosin IIC non-helical

tails. Nanoliquid chromatography–tandem mass spectrometry

(LC-MS/MS) analysis determined with high probability that

multiple residues in both myosin IIB and IIC are phosphory-

lated by TRPM7 in this region.

Like TRPM7, TRPM6 phosphorylates the COOH terminus

of the different myosin II isoforms (Fig. 3A) with a 10-fold

greater incorporation of 32P in myosin IIB and IIC. Again, this

difference is due to the phosphorylation of the non-helical tails

of myosin IIB and IIC by TRPM6 (data not shown). Our LC-

MS/MS experiments indicated that TRPM6 phosphorylates

the same sites as TRPM7 in the different myosin II isoforms

(data not shown). Moreover, mutation of the phosphosites

Thr1800, Ser1803 and Ser1808 to alanine reduced the phos-

phorylation of myosin IIA by TRPM6 and TRPM7 to back-

ground levels (Fig. 3B). Finally, we found that TRPM7
cannot phosphorylate eEF-2 and conversely, eEF-2 kinase

poorly phosphorylates non-muscle myosin II isoforms, show-

ing that these distantly related members of the a-kinase family

each phosphorylate specific substrates in vitro (Fig. 4).
4. Discussion

An important conclusion from our investigation is that

TRPM6 and TRPM7 share exogenous substrates with them-

selves but not with a-kinases having distantly related functions

such as eEF-2 kinase. We demonstrated that TRPM6 and

TRPM7 phosphorylate the different myosin II isoforms on

identical residues. Moreover, TRPM7 failed to phosphorylate

eEF-2 and eEF-2 kinase only weakly phosphorylated myosin

II. While the differences between TRPM7 and eEF-2 kinase

are consistent with a recent study on peptide substrate specific-

ity of a-kinases [15], our results contrast with another study by

Schmitz et al. [6] who concluded that TRPM6 and TRPM7

have different substrate specificities since TRPM6 cross-phos-

phorylates TRPM7 but not vice versa. Our studies differ in

two important ways: (1) we examined the phosphorylation of

unrelated exogenous substrates, whereas Schmitz et al. [6]

investigated the level of cross-phosphorylation by both kinases

and (2) we measured the incorporation of 32P into our sub-

strates while Schmitz et al. [6] used a pan phospho-threonine

antibody to detect phosphorylation. TRPM6 and TRPM7 un-

dergo massive autophosphorylation of the Ser/Thr-rich do-

main predominantly on serine residues [6,11,13]. Therefore,



Fig. 3. Myosin II phosphorylation by TRPM6. (A) TRPM6 phos-
phorylates the COOH terminus of myosin IIA, IIB and IIC. (B)
TRPM6 phosphorylates the same residues in myosin IIA as TRPM7.
Thr1800, Ser1803 and Ser1808 were mutated to alanine to generate
GST-myosin IIA COOH 3xA (aa 1795–1960).

Fig. 4. Preferential phosphorylation of myosin II by TRPM7 and
eEF-2 by eEF-2 kinase. Kinase reactions consisted of TRPM7-cat and
eEF-2 kinase with either GST-myosin IIB COOH or eEF-2.
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the use of the pan-phosphothreonine antibody may not pro-

vide an accurate account of the extent of cross-phosphoryla-

tion by the kinases. Our data clearly demonstrate that

TRPM6 and TRPM7 share substrate specificity when it comes

to phosphorylating exogenous substrates.

Although TRPM6 and TRPM7 phosphorylate all three non-

muscle myosin II isoforms, we observed important differences

between substrates. Most notably, both TRPM6 and TRPM7

phosphorylate the non-helical tail of myosin IIB and IIC but

not that of myosin IIA. The presence of additional phosphoac-

ceptor sites in this region of myosin IIB and IIC led to a 10-

fold increase in 32P incorporation in comparison to myosin

IIA under the kinase reaction conditions used in this investiga-

tion (single time-point and substrate concentration). We would

like to emphasize that these results do not necessarily mean

that myosin IIB and IIC are better substrates for TRPM6

and TRPM7 than myosin IIA, as the phosphorylation occurs

on different residues and important regulatory components

present in mammalian cells may be absent from the in vitro ki-

nase reactions. Additional experiments will be required to

establish the circumstances under which TRPM6 and TRPM7

phosphorylate the different myosin II isoforms in mammalian

cells.

The phosphorylation of the non-helical tails of myosin IIB

and IIC by TRPM6 and TRPM7 was unexpected since a-ki-

nases are thought to preferentially phosphorylate amino acids

in the context of an a-helix, a distinguishing feature of this

atypical protein kinase family [16]. However, characterization

of a peptide library demonstrated that TRPM6 and TRPM7

preferentially phosphorylate peptides with a consensus se-

quence that adopts an a-helix structure under specific solvent

conditions. Taking this information into consideration, an

algorithm was designed to predict TRPM6 and TRPM7 phos-

phorylation sites in its substrates (Ryazanov et al., manuscript

in preparation). This algorithm accurately predicted the phos-

phorylation of the myosin IIB and IIC non-helical tails. Cur-

rently, we are investigating the possibility that the TRPM6

and TRPM7 kinase domains assist in the shaping of these pep-

tides into a-helices for subsequent phosphorylation.

Elucidation of the pathways that control myosin II function

is critical to our understanding of the pathogenesis of human

diseases involving defects in mechanobiology [10]. Recently,

we demonstrated that TRPM7 promotes actomyosin relaxa-

tion in mammalian cells by phosphorylating myosin IIA

[8,9]. Here, we further extend on these findings by showing that

TRPM6 and TRPM7 phosphorylate the assembly domain of

all three non-muscle myosin II isoforms. Both channel-kinases

phosphorylate the same stretch of amino acids in the helical

domain of all three myosin II isoforms. We recently demon-

strated that this region regulates the assembly of myosin IIA

filaments [9]. In addition to the helical domain, TRPM6 and

TRPM7 phosphorylate a cluster of serines and threonines in

the myosin IIB and IIC non-helical tails, respectively. This

stretch of serine residues in myosin IIB is phosphorylated in

vivo by PKCf in response to EGF stimulation and is a critical

determinant in regulating filament assembly and protein local-

ization to the cortical cytoskeleton [17]. This raises the intrigu-

ing possibility that TRPM6 and TRPM7 may synergize with

PKCf to regulate myosin IIB filament stability.

In conclusion, our results are consistent with a role for

TRPM6 and TRPM7 in regulating actomyosin contractility

by phosphorylating myosin IIA, IIB and IIC. Establishing
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the cellular context in which TRPM6 and TRPM7 control the

activity of these different myosin II isoforms and its link to

magnesium homeostasis remain challenges for future research.
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Supplementary data associated with this article can be

found, in the online version, at doi:10.1016/j.febs-

let.2008.07.043.
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