1,117 research outputs found

    Squamous cell carcinoma of the tonsil managed by conventional surgery and postoperative radiation

    Get PDF
    BACKGROUND: The purpose of this study was to report the long-term outcome of patients with squamous cell cancer (SCC) of the tonsil managed by surgery followed by postoperative radiotherapy (PORT). METHODS: Eighty-eight patients treated between 1985 and 2005 were analyzed. Overall survival (OS), disease-specific survival (DSS), and recurrence-free survival (RFS) were determined by the Kaplan-Meier method. Factors predictive of outcome were determined by univariate and multivariate analysis. RESULTS: Forty-eight percent of patients had T3 to T4 disease and 75% had a positive neck. Five-year OS, DSS, and RFS were 66%, 82%, and 80%, respectively. The status of the neck was not predictive of outcome (DSS 80% for N0 vs 82% for N+; p = .97). Lymphovascular invasion was an independent predictor of OS, DSS, and RFS on multivariate analysis. CONCLUSION: Lymphovascular invasion but not pathological stage of the neck is an independent predictor of outcome in patients with tonsillar SCC. (c) 2014 Wiley Periodicals, Inc. Head Neck, 2014

    MICROSTRUCTURAL STABILITY AND OXIDATION RESISTANCE OF 9-12 CHROMIUM STEELS AT ELEVATED TEMPERATURES

    Get PDF
    ABSTRACT Various martensitic 9-12 Cr steels are utilized currently in fossil fuel powered energy plants for their good elevated temperature properties such as creep strength, steam side oxidation resistance, fire side corrosion resistance, and thermal fatigue resistance. Need for further improvements on the properties of 9-12 Cr steels for higher temperature (>600 o C) use is driven by the environmental concerns (i.e., improve efficiency to reduce emissions and fossil fuel consumption). In this paper, we will discuss the results of the research done to explore new subsitutional solute solution and precipitate hardening mechanisms for improved strength of 9-12 Cr martensitic steels. Stability of the phases present in the steels will be evaluated for various temperature and time exposures. A comparison of microstructural properties of the experimental steels and commercial steels will also be presented

    Point Interaction in two and three dimensional Riemannian Manifolds

    Full text link
    We present a non-perturbative renormalization of the bound state problem of n bosons interacting with finitely many Dirac delta interactions on two and three dimensional Riemannian manifolds using the heat kernel. We formulate the problem in terms of a new operator called the principal or characteristic operator. In order to investigate the problem in more detail, we then restrict the problem to one particle sector. The lower bound of the ground state energy is found for general class of manifolds, e.g., for compact and Cartan-Hadamard manifolds. The estimate of the bound state energies in the tunneling regime is calculated by perturbation theory. Non-degeneracy and uniqueness of the ground state is proven by Perron-Frobenius theorem. Moreover, the pointwise bounds on the wave function is given and all these results are consistent with the one given in standard quantum mechanics. Renormalization procedure does not lead to any radical change in these cases. Finally, renormalization group equations are derived and the beta-function is exactly calculated. This work is a natural continuation of our previous work based on a novel approach to the renormalization of point interactions, developed by S. G. Rajeev.Comment: 43 page
    • …
    corecore