National Energy Technology Laboratory

Welding of Dissimilar Alloys for High Temperature Heat Exchangers for SOFC

> Rick Wilson Ömer Doğan Paul King

NETL-Albany, Oregon

Solid Oxide Fuel Cell Systems

 High temperature heat exchangers are a cost enabler in order to meet the stated Solid State Energy Conversion Alliance (SECA) requirements of \$400/kW

Low-Cost High-Temperature Heat Exchangers

Develop low-cost, high-temperature heat exchangers for cathode air preheaters for use in 3-10kW SOFC systems.

- Source: Post-combustor SOFC stack effluent with inlet temperatures of 800-1000°C.
- Sink: Air from cathode air blower (30°C)
- Flow rate: Both source and sink at 1500 slpm max.
- Differential pressure drop: sink 1.5-2.5kPa, source 0.75-1.25kPa
- Effectiveness: 85-90%
- Design life: 40,000 hours

Comparison of Heat Exchanger Types

Micro-Channel Heat Exchangers

Design and construction by Wilson and Alman, U.S. Dept. of Energy, National Energy Technology Center (formerly the Albany Research Center) Plate-Fin Heat Exchangers

MS&T 06 – Joining of Advanced and Specialty Materials October 17, 2006, Cincinnati, OH

Modifying the Design to Reduce Material Costs

- Modifying the flow design could allow extreme temperatures to be isolated to specific regions of the heat exchanger.
- The regions subjected to lesser thermal extremes could then be made from cheaper materials.

Investigation of Dissimilar Metal Welding

Objectives

- To predict weld phases using equilibrium and kinetic calculations and verify them using experimental techniques such as SEM, XRD, optical microscopy.
- To predict welding defects that may cause failure using simulations and experimental techniques.
- To select steel and filler metal compositions based on knowledge gained above.

Approach

- Experimental characterization of welds and defects
- Thermodynamic modeling of mixed zones in dissimilar metal welds

Dissimilar metal welding

• We have looked at 10 combinations of materials for welding:

1.	IN625	and	347SS	with E347
2.	IN625	and	409SS	with E410
3.	IN625	and	AL 20-25+Nb	with E309L
4.	347SS	and	409SS	with E309L
5.	347SS	and	AL 20-25+Nb	with E309L
6.	AL 20-25+Nb	and	409SS	with E309L
7.	AL 20-25+Nb	and	AL 20-25+Nb	with E309L
8.	IN625	and	409SS	with ENiCrMo3
9.	AL 20-25+Nb	and	AL 20-25+Nb	with ENiCrMo3
10	AL 20-25+Nb	and	AL 20-25+Nb	with E347

Welding

- Gas tungsten arc welding (GTAW) process
- The welding parameters were 132 amperes, 13 volts and 10.16 mm per minute welding speed
- The weld specimens were 15.24 cm long 19.05 mm wide and 6.35 mm thick
- The welds were approximately 50.8mm long and 3.175 mm deep
- Welds were made on both sides of the specimens to try to produce full penetration weld at the center of the weld specimens

Dissimilar metal welding

4 combinations showed defects in as welded conditions

IN625	and	347SS	with E347
IN625	and	409SS	with E410 HAZ cracking
IN625	and	AL 20-25+Nb	with E309L
347SS	and	409SS	with E309L
347SS	and	AL 20-25+Nb	with E309L Hot cracking
AL 20-25+Nb	and	409SS	with E309L HAZ cracking
AL 20-25+Nb	and	AL 20-25+Nb	with E309L Hot cracking
IN625	and	409SS	with ENiCrMo3
AL 20-25+Nb	and	AL 20-25+Nb	with ENiCrMo3
AL 20-25+Nb	and	AL 20-25+Nb	with E347
	IN625 IN625 IN625 347SS 347SS 347SS AL 20-25+Nb IN625 AL 20-25+Nb AL 20-25+Nb	IN625 and IN625 and IN625 and 347SS and 347SS and AL 20-25+Nb and IN625 and AL 20-25+Nb and	IN625and347SSIN625and409SSIN625andAL 20-25+Nb347SSand409SS347SSandAL 20-25+NbAL 20-25+Nband409SSAL 20-25+NbandAL 20-25+NbIN625and409SSAL 20-25+NbandAL 20-25+NbAL 20-25+NbandAL 20-25+NbAL 20-25+NbandAL 20-25+NbAL 20-25+NbandAL 20-25+Nb

Dissimilar metal welding

• We heat treated 7 welds at 800°C up to 2000 hours

1.	IN625	and	347SS	with E347
2.	IN625	and	409SS	with E410
3.	IN625	and	AL 20-25+Nb	with E309L
4.	347SS	and	409SS	with E309L
5.	347SS	and	AL 20-25+Nb	with E309L
6.	AL 20-25+Nb	and	409SS	with E309L
7.	AL 20-25+Nb	and	AL 20-25+Nb	with E309L
8.	IN625	and	409SS	with ENiCrMo3
9.	AL 20-25+Nb	and	AL 20-25+Nb	with ENiCrMo3
10	AL 20-25+Nb	and	AL 20-25+Nb	with E347

Welding dissimilar alloys

Interface between AL 20-25+Nb and E309

MS&T 06 – Joining of Advanced and Specialty Materials October 17, 2006, Cincinnati, OH

HV (10kg Load), kg/mm²

MS&T 06 – Joining of Advanced and Specialty Materials October 17, 2006, Cincinnati, OH

Weld cracks originating from the mixed zone

Mixed Zone Experimental Characterization

Mixed Zone Experimental Characterization

Scheil simulation of the mixed zone

Calculated equilibrium phases in the mixed zone between 409 and filler

Selecting / Designing Filler Alloy

 Based on the experimental characterization of welds and thermodynamic simulation, a high Cr (>20 mass%) ferritic steel containing no Ni was selected as filler alloy for the next iteration.

Heat Exchanger Test Facility at NETL

Design Criteria

- Dual atmosphere construction
- 100-300 lbs/hr flow at 2.9 psig
- Temperature range of hot side is 1000F-1650F (650-1000 C)
- Temperature range of cold side is ambient to 600 F (25-300 C)
- Heater design pressure to 4 psig
- Natural gas fired (both hot and cold side)

Testing of Heat Exchangers

HX investigation utilizing HX "elements" to investigate materials performance at the different conditions encountered in high temperature HX

Summary

- Reducing material cost of high temperature heat exchangers can help to reduce the cost of SOFC systems.
- Less expensive materials can be used in lower temperature regions of heat exchangers while the highest temperature parts are built using costly superalloys.
- Dissimilar metal welding issues need to be addressed in order to built heat exchangers using several different alloys.

Summary continued

 In this presentation, we demonstrated how a thermodynamic simulation method can be utilized along with experimental methods to select or design filler metals for dissimilar metal welding.

