National Energy Technology Laboratory

High Temperature Corrosion of Cr-W Alloys in Simulated Syngas

> Ömer Doğan Sophie Bullard Bernie Covino NETL-Albany, Oregon

National Energy Technology Laboratory

Office of Fossil Energy

Objective

 To determine corrosion behavior of Cr-W alloys in a simulated gasifier atmosphere at 800°C and 1000°C.

Experimental Procedure

Materials

- Cr samples (C-3a and C-3b)
- Cr 10 mass % W samples (CW-8a and CW-8b)
- Cr 30 mass % W samples (CW-10a and CW-10b)
- -310 SS sample
- Alloy 718 sample
- Samples were approximately 0.1 in thick, 0.5 in wide, 0.5 in high. They had a 1/8 in diameter hole for hanging on a rack.

Experimental Procedure

Cyclic Corrosion tests

- -At 800°C and 1000°C
- In a flowing simulated syngas (500 ml/min) composed of
 - 30%CO
 - 8%CO₂
 - 20%H₂
 - 0.8%H₂S
 - 2%CH₄
 - 40%N₂
 - 0.02%HCI

Corrosion Apparatus

Experimental Procedure

• One corrosion test cycle consists of

- Weighing samples
- Positioning sample rack in constant temperature zone of the tube of three heat zone furnace and sealing the tube.
- Starting nitrogen gas flow (500 ml/min) and heating at a rate of 300 K/hour.
- Once the temperature reaches and stabilizes at test temperature, gas mixture flow (500 ml/min) starts.
- After the exposure time ends, power to the furnace is turned off and gas mixture flow is stopped. Only nitrogen gas continues to flow.
- After samples cool down to room temperature, they are taken out of the furnace and weighed.

Experimental Procedure

Scale characterization

- XRD for determination of compounds in surface scale
- -SEM for determination of scale structure
- SEM-WDX for determination of chemical composition of phases in scale
- SEM-EDX for determination of chemical composition of phases in scale

Sample holder

Results of cyclic corrosion test at 800°C

Results of cyclic corrosion test at 1000°C

Corrosion in Syngas

TMS Annual Meeting, Feb 25 – Mar 1, 2007 Orlando, Florida

After corrosion test for 288 hours at 1000°C

Cr Specimen

Top Surface of Scale on the Cr Specimen After Corrosion Test at 1000°C for 288 hours

Top Surface of Scale on the Cr Specimen After Corrosion Test at 1000°C for 288 hours

O Ka1

Cr Ka1

S Ka1

Top Surface of Scale on the Cr Specimen After Corrosion Test at 1000°C for 288 hours

S

20.83

1.65

4.62

0.25

1.01

Cr

39.04

45.62

31.26

51.28

47.70

O Ka1

N Ka1_2

C Ka1_2

S Ka1

Oxygen_WD

Cr Ka1

TMS Annual Meeting, Feb 25 - Mar 1, 2007 Orlando, Florida

Near Substrate Metal

Near Substrate Metal

Vickers Hardness (Load = 3 grams)

Top Surface of Scale on the Cr-30W Specimen After Exposure to Syngas at 1000°C for 288 hours

Top Surface of Scale on the Cr-30W Specimen After Exposure to Syngas at 1000°C for 288 hours

O Ka1

Cr Ka1

S Ka1

Top Surface of Scale on the Cr-30W Specimen After Exposure to Syngas at 1000°C for 288 hours

S

15.69

26.12

23.34

11.04

1.66

1.91

Cr

32.69

32.46

33.15

38.68

34.29

32.70

0

51.62

41.42

43.51

50.28

64.04

65.40

TMS Annual Meeting, Feb 25 – Mar 1, 2007 Orlando, Florida

external scale

600pm

600pm

External Corrosion Scale

TMS Annual Meeting, Feb 25 - Mar 1, 2007 Orlando, Florida

Summary

- Cr-W alloys were tested for corrosion resistance in a simulated syngas mixture at 800°C and 1000°C.
- Corrosion rates of Cr and Cr-30W alloys were lower than both Alloy 718 and 310 SS.
- Stable external corrosion scale composed of Cr₂O₃ and Cr₅S₆ was formed during exposure.
- Below the external scale, internal corrosion resulted in compounds such as Cr-carbides, Cr-carbonitides, Cr₂O₃, Cr₅S₆ near the surface.

