25 research outputs found

    Rote Liste der Schwebfliegen (Diptera: Syrphidae) Baden-Württembergs / [Autoren Dieter Doczkal, Klaus Rennwald & Ulrich Schmid]. Fachdienst Naturschutz ... Hrsg. von der Landesanstalt für Umweltschutz Baden-Württemberg

    Get PDF
    Schwebfliegen kommen in großer Zahl in fast allen terrestrischen Lebensräumen vor. Dennoch spielen sie bisher in der praktischen Naturschutzarbeit eine untergeordnete Rolle. Verglichen mit anderen Tiergruppen, wie den Tagfaltern, Laufkäfern oder Wildbienen, werden sie nur selten im Rahmen raumrelevanter Planungen berücksichtigt. Dabei decken sie wie keine andere der häufiger untersuchten Gruppen ein breites Spektrum unterschiedlicher Lebensweisen ab. Während die Imagines der meisten Arten eifrige Blütenbesucher sind und eine wichtige Funktion als Bestäuber ausüben, zeichnen sich die Larven durch eine hohe Diversität von Lebensstrategien aus. Die phytophagen Arten minieren in Stängeln, Wurzeln oder Blättern, befallen unterirdische Speicherorgane von Pflanzen oder zapfen das Kambium von Nadelbäumen an. Manche Arten leben in den Fruchtkörpern von Pilzen. Saprophage Arten nutzen abgestorbene feuchte Pflanzen, an organischem Material reiche Gewässer (Pfützen, Teiche, wassergefüllte Baumhöhlen, etc.), leben in Schleimflüssen von Bäumen, in sich zersetzendem Holz, in Säugerkot oder ernähren sich vom Abfall in Wespen- und Hummelnestern. Die zoophagen Vertreter fressen Blattläuse, Raupen, Wespen- oder Ameisenbrut. Schwebfliegen findet man in praktisch allen terrestrischen Lebensräumen, im Wald ebenso wie auf Äckern und im Grünland, auf Sandrasen wie im Hochmoor. In Mitteleuropa sind die meisten Arten eher in frischen bis feuchten Lebensräumen zu finden, Wälder und andere gehölzreiche Lebensräume sind artenreicher als ganz offene Biotope. Einen für interessierte Laien geschriebenen Überblick über die Lebensweise der Schwebfliegen hat SCHMID (1996) veröffentlicht

    Taxonomic revision of the afrotropical genus <i>Megatrigon </i>Johnson, 1898 (Diptera: Syrphidae)

    Get PDF
    The genus-group taxon Megatrigon Johnson, 1898, stat. nov., is revised and treated as a valid genus within the Merodontini (= Eumerini). Extensive diagnoses are given for the genus and for its three constituent species groups: argenteus group [11 spp.], nivalis group [monotypic], sexfasciatus group [3 spp.]. Five new generic combinations are proposed within Megatrigon: M. argenteus (Walker, 1852) comb. nov., M. flavimarginatus (Hull, 1964) comb. nov., M. jacobi (Hervé-Bazin, 1913) comb. nov., M. nivalis (Hull, 1964) comb. nov. and M. ochreatus (Hull, 1964) comb. nov. All species of the argenteus group are revised and nine new species are described: Megatrigon apiformis sp. nov., M. argentifrons sp. nov., M. argentimaculatus sp. nov., M. cooksoni sp. nov., M. immaculatus sp. nov., M. magnicornis sp. nov., M. natalensis sp. nov., M. sexmaculatus sp. nov., M. tabanoides sp. nov. Within the sexfasciatus group, M. jacobi (Hervé-Bazin, 1913) comb. nov. is treated as a senior synonym of Eumerus connexus Hull, 1964 syn. nov., but no further work is done at the species level due to insufficient material

    First records of Chrysotoxum volaticum Séguy, 1961 from Europe and Platycheirus marokkanus Kassebeer, 1998 from Spain (Diptera: Syrphidae) together with additional records of Spanish Chrysotoxum Meigen, 1803

    Get PDF
    The first European records of Chrysotoxum volaticum Séguy, 1961 from Spain and France, and Platycheirus marokkanus Kassebeer, 1998 from Spain are provided. These are further examples of North African species also present in the Iberian Peninsula. Diagnostic characters are given to separate C. volaticum and the similar Chrysotoxum bicinctum (Linnaeus, 1758), and additional records of other Chrysotoxum Meigen, 1803 hoverflies from Spain are also reported. We also provide DNA barcodes for C. volaticum and discuss the utility of DNA barcoding to identify species in the genus Chrysotoxum.The study of the material of Chrysotoxum in the NHM was made possible by receiving support from the SYNTHESYS project http://www.synthesys.info/ which is financed by European Community Research Infrastructure Action under the FP6 “Structuring the European Research Area” Programme. Financial support was also provided by the Spanish Ministerio de Educación y Ciencia (projects CGL2005-07213/BOS and CGL2006-13847-C02-01). Antonio Ricarte’s position (Ref. UATAL05) at the University of Alicante is funded by the ‘Vicerrectorado de Investigación y Transferencia de Conocimiento’

    Species Identification in Malaise Trap Samples by DNA Barcoding Based on NGS Technologies and a Scoring Matrix

    Get PDF
    The German Barcoding initiatives BFB and GBOL have generated a reference library of more than 16,000 metazoan species, which is now ready for applications concerning next generation molecular biodiversity assessments. To streamline the barcoding process, we have developed a meta-barcoding pipeline: We pre-sorted a single malaise trap sample (obtained during one week in August 2014, southern Germany) into 12 arthropod orders and extracted DNA from pooled individuals of each order separately, in order to facilitate DNA extraction and avoid time consuming single specimen selection. Aliquots of each ordinal-level DNA extract were combined to roughly simulate a DNA extract from a non-sorted malaise sample. Each DNA extract was amplified using four primer sets targeting the CO1-5' fragment. The resulting PCR products (150-400bp) were sequenced separately on an Illumina Mi-SEQ platform, resulting in 1.5 million sequences and 5,500 clusters (coverage >10;CD-HIT-EST, 98%). Using a total of 120,000 DNA barcodes of identified, Central European Hymenoptera, Coleoptera, Diptera, and Lepidoptera downloaded from BOLD we established a reference sequence database for a local CUSTOM BLAST. This allowed us to identify 529 Barcode Index Numbers (BINs) from our sequence clusters derived from pooled Malaise trap samples. We introduce a scoring matrix based on the sequence match percentages of each amplicon in order to gain plausibility for each detected BIN, leading to 390 high score BINs in the sorted samples;whereas 268 of these high score BINs (69%) could be identified in the combined sample. The results indicate that a time consuming pre-sorting process will yield approximately 30% more high score BINs compared to the nonsorted sample in our case. These promising results indicate that a fast, efficient and reliable analysis of next generation data from malaise trap samples can be achieved using this pipeline

    Drei neue Arten der Gattung Epistrophe (Diptera: Syrphidae), mit einem Bestimmungsschlussel fur die deutschen Arten

    No full text
    Volume: 507Start Page: 1End Page: 3

    Ergänzungen zur Wildbienenfauna Baden-Württembergs (Hymenoptera: Apoidea)

    No full text

    A checklist of the hoverflies (Diptera: Syrphidae) of Austria

    No full text
    Heimburg, Helge, Doczkal, Dieter, Holzinger, Werner E. (2022): A checklist of the hoverflies (Diptera: Syrphidae) of Austria. Zootaxa 5115 (2): 151-209, DOI: https://doi.org/10.11646/zootaxa.5115.2.

    Telmatoscopus thuringiacus Beran, Doczkal, Pfister & Wagner, 2010, sp. nov.

    No full text
    Telmatoscopus thuringiacus sp. nov. Material: 13 (holotype) Germany, Thuringia, National Park Hainich, Weberstedt, Birkensee (trap 2) 12–20 May, Malaise-trap, leg. F. Dziok; 13 (paratype) same locality, 26 June– 3 July 2001 leg. F. Dziok; 13 (paratype) same locality, 3–12 July 2001 leg. F. Dziok. Derivatio nominis: Dedicated to the German Federal Land Thuringia that established the National Park Hainich. Male description: Head with reniform eyes. Eye bridge with four rows of facets, distance between eyes about 1 facet diameter. Antenna with barrel-shaped scape, spherical pedicel shorter than scape, and 14 flagellomeres, 1.77 mm long. These are bottle-shaped with long sickle shaped ascoids on (probably) all segments (fig 8). Relative length of antennal segments (assembled from left and right flagellum): 37 - 26-45 - 45-46 - 44 - 43 - 42 - 42 - 42 - 40 - 39 - 38 - 37 - 36 - 33. Palpi lost in holotype. In paratype: absolute length: 0.85 mm, relative length of segments: 34-56 - 56-58. Wing length 2.1 mm. Wing venation: forks R 2 /R 3 and M 1 /M 2 at about middle of wing; R 5 terminates just before wing tip (fig 9). Genitalia (fig 10): Sternal band thin, slightly broader at middle. Gonocoxites cylindrical, slightly bent, more than two times longer than the greatest diameter. Gonostyles longer than gonocoxites, about 4 times longer than wide with sharp tip poiting towards dorsally, so that the real length of the gonostylus is often difficult to judge – Fig 11 shows realistic length ratio. Tergite 9 rectangular as wide as long, lateral margins slightly convergent. Cercopodia slightly bent, longer than tergite 9, distally with an oval group of approximately 30 tenacula, further tenacula scattered along their whole length. Tergite 10 conical, setose. Aedeagal apodeme elongate and Y-shaped; at the distal end two stout, complicatedly built distal sclerites, about sickle-shaped with articulate tips curved outward. The entire distal portion of the aedeagus is visible through a diagonally cut ‘pipe’. The pipe laterally has articulations to the gonocoxites (probably the ventral bridge). Female unknown. Remarks: The new species belongs to a group of dendrolimnobiontic taxa with several (probably synapomorphic) features in larvae and adults. At least the European species are seemingly difficult to distinguish. The species group includes to date Telmatoscopus advenus (Eaton, 1893), Telmatoscopus segu yi (Vaillant, 1990) and probably some Nearctic species such as Telmatoscopus dendrophilus Vaillant, 1983 (USA, Tennessee). Vaillant confused the ‘true’ T. advenus Eaton with T. seguyi, a species he had described in 1990. However, the new species is clearly distinguished from all others by the large number of tenacula, distributed all over the entire length of the cercopodia. The parameres are short and stout, but elongate, long and thin in the other species. Although the larva remains unknown the habitat probably is also the decaying wood. The collections were made in an area with old trees in the National Park Hainich.Published as part of Beran, Bernadett, Doczkal, Dieter, Pfister, Kurt & Wagner, Rüdiger, 2010, Two new species of Psychodidae (subfamilies Trichomyiinae and Psychodinae) from Germany associated with decaying wood, pp. 59-64 in Zootaxa 2386 on page 63, DOI: 10.5281/zenodo.19377
    corecore