24 research outputs found

    Realization of a complete Stern-Gerlach interferometer: Toward a test of quantum gravity

    Get PDF
    The Stern-Gerlach effect, found a century ago, has become a paradigm of quantum mechanics. Unexpectedly, until recently, there has been little evidence that the original scheme with freely propagating atoms exposed to gradients from macroscopic magnets is a fully coherent quantum process. Several theoretical studies have explained why a Stern-Gerlach interferometer is a formidable challenge. Here, we provide a detailed account of the realization of a full-loop Stern-Gerlach interferometer for single atoms and use the acquired understanding to show how this setup may be used to realize an interferometer for macroscopic objects doped with a single spin. Such a realization would open the door to a new era of fundamental probes, including the realization of previously inaccessible tests at the interface of quantum mechanics and gravity

    T^3-Stern-Gerlach Matter-Wave Interferometer

    Get PDF
    We present a unique matter-wave interferometer whose phase scales with the cube of the time the atom spends in the interferometer. Our scheme is based on a full-loop Stern-Gerlach interferometer incorporating four magnetic field gradient pulses to create a state-dependent force. In contrast to typical atom interferometers which make use of laser light for the splitting and recombination of the wave packets, this realization uses no light and can therefore serve as a high-precision surface probe at very close distances.Comment: Phys. Rev. Lett., in print, https://journals.aps.org/prl

    T 3 Stern-Gerlach matter-wave interferometer

    Get PDF
    The article of record as published may be found at https://doi.org/10.1103/PhysRevLett.123.083601We present a unique matter-wave interferometer whose phase scales with the cube of the time the atom spends in the interferometer. Our scheme is based on a full-loop Stern-Gerlach interferometer incorporating four magnetic field gradient pulses to create a state-dependent force. In contrast to typical atom interferometers which make use of laser light for the splitting and recombination of the wave packets, this realization uses no light and can therefore serve as a high-precision surface probe at very close distances.This work is funded in part by the Israel Science Foundation (grant No. 856/18) and the German- Israeli DIP projects (Hybrid devices: FO 703/2-1, AR 924/1-1, DU 1086/2-1) supported by the DFG. We also acknowledge support from the Israeli Council for Higher Education (Israel). M.A.E. is thankful to the Center for Integrated Quantum Science and Technology (IQST ) for its generous financial support. W.P.S. is grateful to Texas A&M University for a Faculty Fellowship at the Hagler Institute for Advanced Study at Texas A&M University, and to Texas A&M AgriLife Research for the support of this work. The research of the IQST is financially supported by the Ministry of Science, Research and Arts, Baden-Wurttemberg. F.A.N. is grateful for a generous Laboratory University Collaboration Initiative (LUCI) grant from the Office of the Secretary of Defense.This work is funded in part by the Israel Science Foundation (grant No. 856/18) and the German- Israeli DIP projects (Hybrid devices: FO 703/2-1, AR 924/1-1, DU 1086/2-1) supported by the DFG. We also acknowledge support from the Israeli Council for Higher Education (Israel). M.A.E. is thankful to the Center for Integrated Quantum Science and Technology (IQST ) for its generous financial support. W.P.S. is grateful to Texas A&M University for a Faculty Fellowship at the Hagler Institute for Advanced Study at Texas A&M University, and to Texas A&M AgriLife Research for the support of this work. The research of the IQST is financially supported by the Ministry of Science, Research and Arts, Baden-Wurttemberg. F.A.N. is grateful for a generous Laboratory University Collaboration Initiative (LUCI) grant from the Office of the Secretary of Defense

    Reologia de polietileno de alta densidade tenacificado com polietileno elastomérico Rheology of high density polyethylene toughened with elastomeric polyethylene

    No full text
    Neste trabalho foram estudadas as propriedades reológicas de polietileno de alta densidade (HDPE) tenacificado com dois tipos de elastômeros metalocênicos à base de poli(etileno-co-octeno) (EOC). Estes elastômeros são polímeros comerciais com diferenças quanto ao peso molecular, índice de fluidez e índice Dow de reologia (DRI). Misturas físicas de HDPE e EOC foram processadas em extrusora monorosca Wortex (L/D=32), à 230 &deg;C e 50 rpm, utilizando percentagem mássica dos EOCs de 5% a 80%. As propriedades reológicas foram avaliadas em experimentos estacionários e dinâmicos a 190 &deg;C e taxas de cisalhamento na faixa de 90 s-1 a 1500 s-1 e freqüências na faixa de 10-1 rad/s a 10² rad/s. As misturas HDPE/EOC exibiram pseudoplasticidade e comportamento reológico complexo. A complexidade do comportamento reológico foi acentuada com o aumento do peso molecular e da concentração de ramificações de cadeia longa (DRI) do EOC.<br>In this work rheological properties of high density polyethylene toughened with two different grades of metallocene elastomers based on poly(ethylene-co-octene) were studied. These elastomers were commercial polymers differing in molecular weight, and Dow Rheology Index (DRI). Blends were processed in a Wortex single screw extruder (L/D=32), at 230 &deg;C and 50 rpm, using mass fractions of EOC in the range from 5% to 80%. The rheological properties were evaluated in steady and dynamic experiments at 190 &deg;C and shear rates in the range from 90 s-1 to 1500 s-1 with frequencies from 10-1 s-1 to 10-2 s-1. The blends exhibited pseudoplasticity and complex rheological behavior. The complex rheological behavior was intensified with increasing molecular weight and long chain branching proportion (DRI) in the EOC elastomers

    Excited-state forms of 2-methylamino-6-methyl-4-nitropyridine N-oxide and 2-butylamino-6-methyl-4-nitropyridine N-oxide

    No full text
    Excited-state quantum chemical calculations of two 2-alkyloamino-6-methyl- 4-nitropyridine N-oxides are presented. Several different calculation methods and different basis sets were used, which all lead to similar results, although the precise values of excited-state energies and excited-state dipóle moments differ. All methods used predict that in the Si excited state four types of isomers occur. In three cases, these excited-state local energy minima correspond to ground-state isomers, and these all have a ππ* character. The fourth excited-state minimum, which we denote L*, does not have a corresponding ground-state isomer and has an nπ* character. This isomer is stable and plays an important role in understanding the photophysics of these molecules. In addition, we also calculated barriers between these excited-state minima, using predescribed reaction pathways. The theoretical results derived in this Article are confronted with experimental data from earlier papers. © 2009 American Chemical Society

    Isotope and Phase Effects on the Proton Tautomerism in Polycrystalline Porphycene Revealed by NMR

    No full text
    Using high resolution solid state (15)N and (2)H spectroscopy and longitudinal relaxometry we have studied the tautomerism of porphycene in the solid state, corresponding to a double proton transfer in two cooperative hydrogen bonds. The tautomerism is degenerate above 225 K but the degeneracy is lifted below this temperature, indicating a phase transition. Thus, the high-temperature phase is characterized by a dynamic proton disorder and the low-temperature phase by a dynamic proton order. (15)N magnetization transfer experiments obtained under cross polarization (CP) and magic angle spinning (MAS) conditions reveal the presence of two nonequivalent molecules A and B in the unit cell of phase II, exhibiting slightly different equilibrium constants of the tautomerism. Rate constants of the tautomerism in phase I could be obtained by the analysis of the longitudinal (15)N and (2)H relaxation times. The former, obtained at 9.12 MHz, exhibit a T(1) minimum around 270 K and are consistent with proton transfer induced dipolar (1)H-(15)N relaxation mechanism. The latter, obtained at 46.03 MHz, exhibit a minimum around 330 K and arise from quadrupole relaxation. Within the margin of error, the rate constants of the HH and of the HD/DD tautomerism are the same, exhibiting a barrier of about 30 kJ mol(-1), as expected for an overbarrier reaction in a configuration with two compressed hydrogen bonds. By contrast, in the low-temperature phase a switch of the DD transfer kinetics into the nanosecond time scale is observed, exhibiting a non-Arrhenius temperature dependence which is typical for tunneling. This increase of the rate constants by lowering the temperature is discussed in terms of a switch from a concerted HH transfer in phase I to a stepwise transfer in phase II, where intermolecular interactions lower the energy of one of the cis-intermediates
    corecore