492 research outputs found
New double indentation technique for measurement of the elasticity modulus of thin objects
In this paper we introduce a new method to determine the Young's modulus of thin (biological) samples. The method is especially suitable for small objects with a thickness of a few hundred micrometers. Such specimens cannot be examined with existing tests: compression and tensile tests need well-known geometry and boundary conditions while classic indentation tests need relatively thick pieces of material. In order to determine the elastic modulus we use the indentation theory as proposed by Sneddon and correct it with a finite element calculated kappa factor to compensate for the small thickness. In order to avoid material deformations at the contact zone between the sample bottom and the sample stage, we replace the sample stage by a second indentation needle. In this way the sample can be clamped between two identical needles and a virtual mirror plane is introduced. The new method was used on four test-materials and results agreed well with the outcome of a standard compression method applied on large samples of the same materials. As an application example the technique was applied on thin biological samples, namely middle ear ossicles of rabbits
On-chip laser Doppler vibrometer for arterial pulse wave velocity measurement
Pulse wave velocity (PWV) is an important marker for cardiovascular risk. The Laser Doppler vibrometry has been suggested as a potential technique to measure the local carotid PWV by measuring the transit time of the pulse wave between two locations along the common carotid artery (CCA) from skin surface vibrations. However, the present LDV setups are still bulky and difficult to handle. We present in this paper a more compact LDV system integrated on a CMOS-compatible silicon-on-insulator substrate. In this system, a chip with two homodyne LDVs is utilized to simultaneously measure the pulse wave at two different locations along the CCA. Measurement results show that the dual-LDV chip can successfully conduct the PWV measurement
Magnetostriction strain measurement: heterodyne laser interferometry versus strain gauge technique
Deformation of the ferromagnetic material, known as magnetostriction, causes vibrations and noise of electrical machines and transformer cores. A setup by using heterodyne laser interferometers has been built to measure the magnetostriction strains as a function of the applied magnetic field. The measurement results on a sample of nonoriented electrical steel are presented in this work. These results are compared with those obtained by using a strain gauge setup. The laser measurements are less disturbed by noise, especially for measurements under low amplitude magnetisation. In addition, contrary to the strain gauge samples, the sample preparation for the laser setup does not require removal of the protective coating. Measurement results on the coated samples are highly helpful for the calculation of the magnetostriction noise of the device. The coated samples show smaller deformation, since the coating applies tensile stress to the material. For the case of the same nonoriented material the reduction of the magnetostriction strains in amplitude is about 20%
Magnetostriction measurement and the contribution of magnetostriction to the noise of a one-phase transformer
Deformation of magnetised electrical steel samples, known as magnetostriction, is a main contributor to the noise of electrical machines and especially transformers. In this work, the magnetostriction strains of such samples are measured by using a heterodyne laser vibrometer setup. The results are used to model the data and perform a Finite Element (FE) calculation for one-phase transformer test geometry. To validate the FE data, a transformer test model is built with the same geometry as of that of the FE model. A comparison of the FE data with the measured vibrations of the magnetised test transformer will be reported later
Magnetostrictive deformation of a transformer: a comparison between calculation and measurement
Magnetostriction, which refers to the deformation of the core material of transformers and electrical machines, is a main contributor to the total noise. In this work, a technique is proposed to calculate the magnetostrictive deformations of the core of the aforementioned devices. This technique is based on finite element approach with an artificial neural network model of the magnetostrictive behaviour of the core material. The strain measurements are carried out by using a dual heterodyne laser
interferometer setup. The proposed technique is then applied to a single-phase test transformer core. As a validation, the vibration of the magnetised core of the same setup is measured by using a laser scanning vibrometer
Magnetostriction measurement by using dual heterodyne laser interferometers
Electrical machines and transformers have a core built out of laminations of ferromagnetic materials. A portion of the vibrations and noise of these devices is due to magnetic forces and magnetostriction arising from the magnetic core. Magnetic forces are well known, and analytical methods are extensively used to calculate them. Magnetostriction can be defined as the deformation of the ferromagnetic material in the presence of a magnetic field. Unlike magnetic forces, magnetostriction shows a rather complex behavior. It varies for every material, and it depends on the applied magnetic field and external pressure. Therefore, magnetostrictive behavior of every material needs to be determined experimentally by means of strain measurements. Strain gauge measurement techniques have been used before at the Electrical Energy Laboratory (EELAB), Ghent University, Ghent, Belgium. In this paper, a new measurement method using dual heterodyne laser interferometers is proposed to overcome the drawbacks of the old method. The proposed measurement setup and the working principles are explained. The possibility to apply both techniques on one and the same sample can also reveal some interesting results about the quality of both techniques
Sound attenuation in the ear of domestic chickens (Gallus gallus domesticus) as a result of beak opening
Because the quadrate and the eardrum are connected, the hypothesis was tested that birds attenuate the transmission of sound through their ears by opening the bill, which potentially serves as an additional protective mechanism for self-generated vocalizations. In domestic chickens, it was examined if a difference exists between hens and roosters, given the difference in vocalization capacity between the sexes. To test the hypothesis, vibrations of the columellar footplate were measured ex vivo with laser Doppler vibrometry (LDV) for closed and maximally opened beak conditions, with sounds introduced at the ear canal. The average attenuation was 3.5 dB in roosters and only 0.5 dB in hens. To demonstrate the importance of a putative protective mechanism, audio recordings were performed of a crowing rooster. Sound pressures levels of 133.5 dB were recorded near the ears. The frequency content of the vocalizations was in accordance with the range of highest hearing sensitivity in chickens. The results indicate a small but significant difference in sound attenuation between hens and roosters. However, the amount of attenuation as measured in the experiments on both hens and roosters is small and will provide little effective protection in addition to other mechanisms such as stapedius muscle activity
Deformation of avian middle ear structures under static pressure loads, and potential regulation mechanisms
Static pressure changes can alter the configuration and mechanical behavior of the chain of ossicles, which may affect the acoustic transfer function. In mammals, the Eustachian tube plays an important role in restoring ambient middle ear pressure, hence restoring the acoustic transfer function and excluding barotrauma of the middle and inner ear. Ambient pressure fluctuations can be potentially extreme in birds and due to the simple structure of the avian middle ear (one ossicle, one muscle), regulation of the middle ear pressure via reflexive opening of the pharyngotympanic tube appears all the more important. In this study the deformations of the chicken (Gallus gallus domesticus) middle ear structures, as a result of middle ear pressure alterations, are quantified, using micro-CT scanning. It was experimentally tested whether reflexive opening of the pharyngotympanic tube to restore ambient middle ear pressure is present in chicken and mallard (Anas platyrhynchos) and whether this mechanism depends on sensing middle ear pressure indirectly via deformations of the middle ear components or sensing the middle ear pressure directly. A translation of the columella footplate was observed when middle ear pressure was kept at 1 kPa and -1 kPa relative to ambient pressure. Deformation of the tympanic membrane was larger than the columella footplate translation. Bending and deformation of the extracolumella was observed. Opening of the pharyngotympanic tube occurred at random pressure for both chicken and mallard when middle ear pressure was raised and lowered by 1.5 kPa relative to ambient pressure. We also did not find a difference in middle ear venting rate when middle ear pressure was held constant at 0.5, 1, 1.5, -0.5, -1 and -1.5 kPa for chickens and at 1, 2, 4, -1, -2 and -4 kPa for mallards. As a result, no statement can be made about pressure within the avian middle ear being measured directly or indirectly. Our experiments do not support the presence of a short-loop reflexive control of pressure equilibration via the pharyngotympanic tube. However, it is still possible that triggering this loop requires additional sensorial input (e.g. visual, vestibular) or that it occurs voluntarily (being controlled at a higher brain level)
- …