16 research outputs found
Études cinétique et mécanistique d'oxydation/minéralisation des antibiotiques sulfaméthoxazole (SMX), amoxicilline (AMX) et sulfachloropyridazine (SPC) en milieux aqueux par procédés électrochimiques d'oxydation avancée : mesure et suivi d'évolution de la toxicité lors du traitement
After their use, the drugs used in human or veterinary are partially metabolized during their use and then the non metabolized drugs and/or their metabolites are continuously released into the wastewater. Their presence and accumulation in natural waters of these substances constitutes an emerging pollution leading to the disruption of ecosystems and increased malfunction in the reproduction of aquatic species such as fish. Among the, pharmaceuticals pollutants, the antibiotics deserve special attention because they are used in very large quantities and are biologically active molecules that can interact with specific biological targets leading to emergence of the phenomenon of microorganism's resistance towards the potential pathogens such as bacteria. It is therefore important to develop efficient treatment methodologies for limiting the presence of pharmaceutical contaminants in aquatic environments.In this work we applied the electro-Fenton process (EF), an indirect advanced electrochemical oxidation process, to the oxidative degradation of selected three antibiotics largely used: sulfamethoxazole (SMX), amoxicillin (AMX) and sulfachloropyridazine (SCP). The treatment of aqueous solutions of these antibiotics was achieved in aqueous medium thank to the electrochemically generated hydroxyl radicals. The hydroxyl radicals are produced in situ at constant current in an undivided electrochemical cell, equipped with a three-dimensional cathode (carbon felt) and a Pt or BDD anode. These radicals are generated through the Fenton reaction in homogeneous medium:H2O2 + Fe2+ + H+ → Fe3+ + H2O + •OHwith the electrochemical generation of H2O2 (from 2-electrons reduction of dissolved O2) and regeneration of Fe2+ ions (from one-electron reduction of Fe3+ ions formed by Fenton reaction).The effect of some parameters on the oxidative degradation of antibiotics and on the mineralization of their aqueous solutions was investigated. The co-catalytic effect of Cu2+ was also studied. Hydroxyl radicals formed in aqueous medium are very powerful oxidizing agents and lead to mineralization of antibiotic under study. The kinetics study shows that oxidative degradation of the three antibiotics follows a pseudo-first order, with relatively short degradation time. For example, with a Pt anode, the complete oxidation of antibiotics SMX, AMX and SCP was achieved in less than 15 min at 300 mA. The absolute rate constant of hydroxylation reactions of antibiotics under study and their several aromatic intermediates was determined by competition kinetics method using the p-hydroxybenzoic acid as reference compound. The identification and monitoring of aromatic oxidation products, short-chain carboxylic acids and released inorganic ions during the treatment, allow use to propose a general mineralization reaction pathway for antibiotics degradation by hydroxyl radicals. The efficiency of anodic oxidation (AO) with a BDD anode and Pt was also studied comparatively. The efficiency of mineralization of aqueous solutions of antibiotics was evaluated by measuring total organic carbon (TOC). The evolution of toxicity during the treatment of antibiotic solutions by Microtox® method based on the inhibition measurements of the luminescence of marine bacteria Vibrio fischeri showed the formation of intermediates more toxic than of starting molecules. The overall results confirm the efficiency of electro-Fenton method for remediation of wastewater contaminated with antibioticsSuite à leur utilisation, les médicaments sont souvent partiellement métabolisés; ainsi ces substances pharmaceutiques et/ou leurs métabolites sont rejetés continuellement dans les eaux usées. Leur présence et accumulation dans les eaux naturelles constituent une pollution émergente conduisant à la perturbation des écosystèmes et l'accroissement de mal fonctionnement de la reproduction des espèces aquatiques telles que les poissons. Parmi les polluants pharmaceutiques, les antibiotiques méritent une attention particulière parce qu'ils sont utilisés en grande quantité d'une part et constituent des molécules biologiquement actives pouvant interagir avec des cibles biologiques spécifiques conduisant à l'apparition du phénomène de résistance des micro-organismes potentiellement pathogènes tels que les bactéries (vis-à-vis de ces médicaments employés pour les combattre). Une action préventive est donc indispensable pour réduire leur présence dans les milieux aquatiques naturels.Dans ce travail nous avons appliqué le procédé électro-Fenton (EF), une méthode indirecte d'oxydation électrochimique très performante, à la dégradation des polluants pharmaceutiques sélectionnés, trois antibiotiques couramment utilisés : le sulfaméthoxazole (SMX), l'amoxicilline (AMX) et sulfachloropyridazine (SCP). Le traitement des solutions aqueuses de ces antibiotiques été réalisé en milieux aqueux acide à l'aide des radicaux hydroxyles générés électrochimiquement. Les radicaux hydroxyles sont produits in situ à courant constant dans une cellule électrochimique non divisée, munie d'une cathode tridimensionnelle de grande surface spécifique (feutre de carbone) et d'une anode de Pt ou de BDD afin de suivre la cinétique d'oxydation avec les radicaux hydroxyles et la minéralisation de leurs solutions aqueuses. Ces radicaux sont générés à travers la réaction de Fenton :H2O2 + Fe2+ + H+ → Fe3+ + H2O + •OHdans laquelle les réactifs générés (H2O2) ou régénéré (Fe2+ en tant que catalyseur) électrocatalytiquemment. L'influence des différents paramètres sur la cinétique de dégradation des antibiotiques et sur la cinétique de minéralisation des solutions d'antibiotiques a été étudiée. L'effet co-catalytique des ions Cu2+ a été aussi examiné. Les radicaux hydroxyles formés sont des oxydantes très puissants et réagissent sur les antibiotiques en question conduisant à leur minéralisation. L'étude cinétique montre que la dégradation oxydative des trois antibiotiques suit une cinétique de réaction du pseudo-premier ordre, avec des temps de dégradation assez courts. Par exemple, avec une anode de Pt, l'oxydation complète des molécules SMX, AMX et SCP a été achevée en moins de 15 min à 300 mA.Afin d'établir les voies de dégradation avec les radicaux hydroxyles, les intermédiaires aromatiques, les acides carboxyliques formés ainsi que les ions inorganiques libérés dans la solution lors du traitement ont été identifiés et leur évolution dans le temps a été suivie. Les valeurs des constantes de vitesse des réactions entre les •OH et les antibiotiques et leurs intermédiaires ont été déterminés par la technique de cinétique de compétition à l'aide d'un composé de référence, l'acide p-hydroxybenzoϊque. L'efficacité du procédé d'oxydation anodique (OA) avec une anode Pt et BDD à titre comparatif avec le procédé électro-Fenton a été aussi étudiée. L'efficacité de minéralisation des solutions aqueuses d'antibiotique à été évaluée par mesure du carbone organique total (COT). Le suivi de la toxicité lors du traitement des solutions d'antibiotiques par la méthode Microtox®, (une méthode basée sur la mesure de la luminescence des bactéries marines Vibrio fischeri) a montré la formation des intermédiaires plus toxiques que les molécules mères.L'ensemble des résultats obtenus confirme l'efficacité du procédé électro-Fenton pour la dépollution des effluents aqueux chargés d'antibiotique
Studies on oxidation/mineralization kinetics and mechanism of antibiotics sulfamethoxazole (SMX), amoxicillin (AMX) and sulfachloropyridazine (SPC) in aqueous media by electrochemical advanced oxidation processes : measuring and monitoring the evolution of toxicity during treatment
Suite à leur utilisation, les médicaments sont souvent partiellement métabolisés; ainsi ces substances pharmaceutiques et/ou leurs métabolites sont rejetés continuellement dans les eaux usées. Leur présence et accumulation dans les eaux naturelles constituent une pollution émergente conduisant à la perturbation des écosystèmes et l'accroissement de mal fonctionnement de la reproduction des espèces aquatiques telles que les poissons. Parmi les polluants pharmaceutiques, les antibiotiques méritent une attention particulière parce qu'ils sont utilisés en grande quantité d'une part et constituent des molécules biologiquement actives pouvant interagir avec des cibles biologiques spécifiques conduisant à l'apparition du phénomène de résistance des micro-organismes potentiellement pathogènes tels que les bactéries (vis-à-vis de ces médicaments employés pour les combattre). Une action préventive est donc indispensable pour réduire leur présence dans les milieux aquatiques naturels.Dans ce travail nous avons appliqué le procédé électro-Fenton (EF), une méthode indirecte d'oxydation électrochimique très performante, à la dégradation des polluants pharmaceutiques sélectionnés, trois antibiotiques couramment utilisés : le sulfaméthoxazole (SMX), l'amoxicilline (AMX) et sulfachloropyridazine (SCP). Le traitement des solutions aqueuses de ces antibiotiques été réalisé en milieux aqueux acide à l'aide des radicaux hydroxyles générés électrochimiquement. Les radicaux hydroxyles sont produits in situ à courant constant dans une cellule électrochimique non divisée, munie d'une cathode tridimensionnelle de grande surface spécifique (feutre de carbone) et d'une anode de Pt ou de BDD afin de suivre la cinétique d'oxydation avec les radicaux hydroxyles et la minéralisation de leurs solutions aqueuses. Ces radicaux sont générés à travers la réaction de Fenton :H2O2 + Fe2+ + H+ → Fe3+ + H2O + •OHdans laquelle les réactifs générés (H2O2) ou régénéré (Fe2+ en tant que catalyseur) électrocatalytiquemment. L'influence des différents paramètres sur la cinétique de dégradation des antibiotiques et sur la cinétique de minéralisation des solutions d'antibiotiques a été étudiée. L'effet co-catalytique des ions Cu2+ a été aussi examiné. Les radicaux hydroxyles formés sont des oxydantes très puissants et réagissent sur les antibiotiques en question conduisant à leur minéralisation. L'étude cinétique montre que la dégradation oxydative des trois antibiotiques suit une cinétique de réaction du pseudo-premier ordre, avec des temps de dégradation assez courts. Par exemple, avec une anode de Pt, l'oxydation complète des molécules SMX, AMX et SCP a été achevée en moins de 15 min à 300 mA.Afin d'établir les voies de dégradation avec les radicaux hydroxyles, les intermédiaires aromatiques, les acides carboxyliques formés ainsi que les ions inorganiques libérés dans la solution lors du traitement ont été identifiés et leur évolution dans le temps a été suivie. Les valeurs des constantes de vitesse des réactions entre les •OH et les antibiotiques et leurs intermédiaires ont été déterminés par la technique de cinétique de compétition à l'aide d'un composé de référence, l'acide p-hydroxybenzoϊque. L'efficacité du procédé d'oxydation anodique (OA) avec une anode Pt et BDD à titre comparatif avec le procédé électro-Fenton a été aussi étudiée. L'efficacité de minéralisation des solutions aqueuses d'antibiotique à été évaluée par mesure du carbone organique total (COT). Le suivi de la toxicité lors du traitement des solutions d'antibiotiques par la méthode Microtox®, (une méthode basée sur la mesure de la luminescence des bactéries marines Vibrio fischeri) a montré la formation des intermédiaires plus toxiques que les molécules mères.L'ensemble des résultats obtenus confirme l'efficacité du procédé électro-Fenton pour la dépollution des effluents aqueux chargés d'antibiotiquesAfter their use, the drugs used in human or veterinary are partially metabolized during their use and then the non metabolized drugs and/or their metabolites are continuously released into the wastewater. Their presence and accumulation in natural waters of these substances constitutes an emerging pollution leading to the disruption of ecosystems and increased malfunction in the reproduction of aquatic species such as fish. Among the, pharmaceuticals pollutants, the antibiotics deserve special attention because they are used in very large quantities and are biologically active molecules that can interact with specific biological targets leading to emergence of the phenomenon of microorganism's resistance towards the potential pathogens such as bacteria. It is therefore important to develop efficient treatment methodologies for limiting the presence of pharmaceutical contaminants in aquatic environments.In this work we applied the electro-Fenton process (EF), an indirect advanced electrochemical oxidation process, to the oxidative degradation of selected three antibiotics largely used: sulfamethoxazole (SMX), amoxicillin (AMX) and sulfachloropyridazine (SCP). The treatment of aqueous solutions of these antibiotics was achieved in aqueous medium thank to the electrochemically generated hydroxyl radicals. The hydroxyl radicals are produced in situ at constant current in an undivided electrochemical cell, equipped with a three-dimensional cathode (carbon felt) and a Pt or BDD anode. These radicals are generated through the Fenton reaction in homogeneous medium:H2O2 + Fe2+ + H+ → Fe3+ + H2O + •OHwith the electrochemical generation of H2O2 (from 2-electrons reduction of dissolved O2) and regeneration of Fe2+ ions (from one-electron reduction of Fe3+ ions formed by Fenton reaction).The effect of some parameters on the oxidative degradation of antibiotics and on the mineralization of their aqueous solutions was investigated. The co-catalytic effect of Cu2+ was also studied. Hydroxyl radicals formed in aqueous medium are very powerful oxidizing agents and lead to mineralization of antibiotic under study. The kinetics study shows that oxidative degradation of the three antibiotics follows a pseudo-first order, with relatively short degradation time. For example, with a Pt anode, the complete oxidation of antibiotics SMX, AMX and SCP was achieved in less than 15 min at 300 mA. The absolute rate constant of hydroxylation reactions of antibiotics under study and their several aromatic intermediates was determined by competition kinetics method using the p-hydroxybenzoic acid as reference compound. The identification and monitoring of aromatic oxidation products, short-chain carboxylic acids and released inorganic ions during the treatment, allow use to propose a general mineralization reaction pathway for antibiotics degradation by hydroxyl radicals. The efficiency of anodic oxidation (AO) with a BDD anode and Pt was also studied comparatively. The efficiency of mineralization of aqueous solutions of antibiotics was evaluated by measuring total organic carbon (TOC). The evolution of toxicity during the treatment of antibiotic solutions by Microtox® method based on the inhibition measurements of the luminescence of marine bacteria Vibrio fischeri showed the formation of intermediates more toxic than of starting molecules. The overall results confirm the efficiency of electro-Fenton method for remediation of wastewater contaminated with antibiotic
Études cinétique et mécanistique d'oxydation/minéralisation des antibiotiques sulfaméthoxazole (SMX), amoxicilline (AMX) et sulfachloropyridazine (SPC) en milieux aqueux par procédés électrochimiques d'oxydation avancée (mesure et suivi d'évolution de la toxicité lors du traitement)
Suite à leur utilisation, les médicaments sont souvent partiellement métabolisés; ainsi ces substances pharmaceutiques et/ou leurs métabolites sont rejetés continuellement dans les eaux usées. Leur présence et accumulation dans les eaux naturelles constituent une pollution émergente conduisant à la perturbation des écosystèmes et l'accroissement de mal fonctionnement de la reproduction des espèces aquatiques telles que les poissons. Parmi les polluants pharmaceutiques, les antibiotiques méritent une attention particulière parce qu'ils sont utilisés en grande quantité d'une part et constituent des molécules biologiquement actives pouvant interagir avec des cibles biologiques spécifiques conduisant à l'apparition du phénomène de résistance des micro-organismes potentiellement pathogènes tels que les bactéries (vis-à-vis de ces médicaments employés pour les combattre). Une action préventive est donc indispensable pour réduire leur présence dans les milieux aquatiques naturels.Dans ce travail nous avons appliqué le procédé électro-Fenton (EF), une méthode indirecte d'oxydation électrochimique très performante, à la dégradation des polluants pharmaceutiques sélectionnés, trois antibiotiques couramment utilisés : le sulfaméthoxazole (SMX), l'amoxicilline (AMX) et sulfachloropyridazine (SCP). Le traitement des solutions aqueuses de ces antibiotiques été réalisé en milieux aqueux acide à l'aide des radicaux hydroxyles générés électrochimiquement. Les radicaux hydroxyles sont produits in situ à courant constant dans une cellule électrochimique non divisée, munie d'une cathode tridimensionnelle de grande surface spécifique (feutre de carbone) et d'une anode de Pt ou de BDD afin de suivre la cinétique d'oxydation avec les radicaux hydroxyles et la minéralisation de leurs solutions aqueuses. Ces radicaux sont générés à travers la réaction de Fenton :H2O2 + Fe2+ + H+ -> Fe3+ + H2O + OHdans laquelle les réactifs générés (H2O2) ou régénéré (Fe2+ en tant que catalyseur) électrocatalytiquemment. L'influence des différents paramètres sur la cinétique de dégradation des antibiotiques et sur la cinétique de minéralisation des solutions d'antibiotiques a été étudiée. L'effet co-catalytique des ions Cu2+ a été aussi examiné. Les radicaux hydroxyles formés sont des oxydantes très puissants et réagissent sur les antibiotiques en question conduisant à leur minéralisation. L'étude cinétique montre que la dégradation oxydative des trois antibiotiques suit une cinétique de réaction du pseudo-premier ordre, avec des temps de dégradation assez courts. Par exemple, avec une anode de Pt, l'oxydation complète des molécules SMX, AMX et SCP a été achevée en moins de 15 min à 300 mA.Afin d'établir les voies de dégradation avec les radicaux hydroxyles, les intermédiaires aromatiques, les acides carboxyliques formés ainsi que les ions inorganiques libérés dans la solution lors du traitement ont été identifiés et leur évolution dans le temps a été suivie. Les valeurs des constantes de vitesse des réactions entre les OH et les antibiotiques et leurs intermédiaires ont été déterminés par la technique de cinétique de compétition à l'aide d'un composé de référence, l'acide p-hydroxybenzo que. L'efficacité du procédé d'oxydation anodique (OA) avec une anode Pt et BDD à titre comparatif avec le procédé électro-Fenton a été aussi étudiée. L'efficacité de minéralisation des solutions aqueuses d'antibiotique à été évaluée par mesure du carbone organique total (COT). Le suivi de la toxicité lors du traitement des solutions d'antibiotiques par la méthode Microtox®, (une méthode basée sur la mesure de la luminescence des bactéries marines Vibrio fischeri) a montré la formation des intermédiaires plus toxiques que les molécules mères.L'ensemble des résultats obtenus confirme l'efficacité du procédé électro-Fenton pour la dépollution des effluents aqueux chargés d'antibiotiquesAfter their use, the drugs used in human or veterinary are partially metabolized during their use and then the non metabolized drugs and/or their metabolites are continuously released into the wastewater. Their presence and accumulation in natural waters of these substances constitutes an emerging pollution leading to the disruption of ecosystems and increased malfunction in the reproduction of aquatic species such as fish. Among the, pharmaceuticals pollutants, the antibiotics deserve special attention because they are used in very large quantities and are biologically active molecules that can interact with specific biological targets leading to emergence of the phenomenon of microorganism's resistance towards the potential pathogens such as bacteria. It is therefore important to develop efficient treatment methodologies for limiting the presence of pharmaceutical contaminants in aquatic environments.In this work we applied the electro-Fenton process (EF), an indirect advanced electrochemical oxidation process, to the oxidative degradation of selected three antibiotics largely used: sulfamethoxazole (SMX), amoxicillin (AMX) and sulfachloropyridazine (SCP). The treatment of aqueous solutions of these antibiotics was achieved in aqueous medium thank to the electrochemically generated hydroxyl radicals. The hydroxyl radicals are produced in situ at constant current in an undivided electrochemical cell, equipped with a three-dimensional cathode (carbon felt) and a Pt or BDD anode. These radicals are generated through the Fenton reaction in homogeneous medium:H2O2 + Fe2+ + H+ -> Fe3+ + H2O + OHwith the electrochemical generation of H2O2 (from 2-electrons reduction of dissolved O2) and regeneration of Fe2+ ions (from one-electron reduction of Fe3+ ions formed by Fenton reaction).The effect of some parameters on the oxidative degradation of antibiotics and on the mineralization of their aqueous solutions was investigated. The co-catalytic effect of Cu2+ was also studied. Hydroxyl radicals formed in aqueous medium are very powerful oxidizing agents and lead to mineralization of antibiotic under study. The kinetics study shows that oxidative degradation of the three antibiotics follows a pseudo-first order, with relatively short degradation time. For example, with a Pt anode, the complete oxidation of antibiotics SMX, AMX and SCP was achieved in less than 15 min at 300 mA. The absolute rate constant of hydroxylation reactions of antibiotics under study and their several aromatic intermediates was determined by competition kinetics method using the p-hydroxybenzoic acid as reference compound. The identification and monitoring of aromatic oxidation products, short-chain carboxylic acids and released inorganic ions during the treatment, allow use to propose a general mineralization reaction pathway for antibiotics degradation by hydroxyl radicals. The efficiency of anodic oxidation (AO) with a BDD anode and Pt was also studied comparatively. The efficiency of mineralization of aqueous solutions of antibiotics was evaluated by measuring total organic carbon (TOC). The evolution of toxicity during the treatment of antibiotic solutions by Microtox® method based on the inhibition measurements of the luminescence of marine bacteria Vibrio fischeri showed the formation of intermediates more toxic than of starting molecules. The overall results confirm the efficiency of electro-Fenton method for remediation of wastewater contaminated with antibioticsPARIS-EST-Université (770839901) / SudocSudocFranceF
Removal of carbamazepine from spiked municipal wastewater using electro-Fenton process
The electrochemical degradation of carbamazepine (CBZ) in both synthetic solutions (CBZo = 12 mg/L) and enriched municipal effluents (CBZo = 60–70 μg/L) was investigated using an electro-Fenton (EF) process. Different operating parameters were investigated, including current intensity, pH, reaction time, ferrous ion concentration, and the type of anode material. The current intensity, the type of anode material, and the concentration of ferrous ions played an important role in the CBZ degradation efficiency. The degradation was mainly attributed to direct anodic oxidation. The best operating conditions for the synthetic sample were obtained at a current density of 0.2 A, a pH of 3.0, and 120 min of treatment using a boron-doped diamond (BDD) anode in the presence of 0.25 mM of Fe2+. Under these conditions, 52 % of total organic carbon (TOC) and 73 % of CBZ were removed. The process was also tested as tertiary treatment for a municipal wastewater treatment plant effluent, and CBZ was completely removed
Clean electrochemical deposition of calcium carbonate to prevent scale formation in cooling water systems.
Calcium carbonate (CaCO₃) deposited in water systems leads to scale formation, decreases flow rate, reduces heat transfer and favors microbial proliferation of toxic bacteria such as Legionella. This issue may be solved by electrochemical deposition, without adding toxic chemicals. Therefore, we studied here the deposition of CaCO₃ by electrochemical reduction of oxygen into hydroxide ions with stainless steel and titanium (Ti) working electrodes. Analysis was done using cyclic voltammetry, chronoamperometry, dynamic impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (EDX) coupled with X-ray diffraction (XRD). Results show that optimal formation of CaCO₃ is done at −1.2 V with the stainless steel electrode and at −1.4 V for the Ti electrode. More negative potentials induce the formation of calcite. Using the Ti electrode, we found that aragonite is the major form (82 %), with only one capacitive loop. Using the stainless steel electrode at 1.2 V, we found 47 % of aragonite and 38 % of calcite. Overall, our findings demonstrate the feasibility of the electrochemical deposition of CaCO₃ in cooling water systems, without the addition of any chemical
Application des procédés d’oxydation avancée pour le traitement des eaux contaminées par les pesticides – revue de littérature
Les pesticides sont des substances chimiques et naturelles destinées à détruire, combattre ou repousser les organismes indésirables ou nuisibles qui causent des dommages aux cultures et produits agricoles. Leur utilisation permet aussi d’entretenir les espaces publics et les voies ferrées. Ces utilisations multiples des pesticides expliquent leur présence dans divers compartiments environnementaux comme l’eau, les sols et l’air. Cette présence dans l’environnement a des conséquences néfastes sur les êtres vivants, en particulier chez l’Homme où l’exposition aux pesticides peut causer des maladies neurodégénératives, congénitales et divers types de cancer. Il est donc nécessaire de contrôler les sources d’émission, réduire leurs transferts dans l’environnement et traiter les milieux d’exposition contaminés à l’aide de procédés d’épuration efficaces comme les procédés d’oxydation avancée (POA). Dans cette revue de synthèse bibliographique, l’accent est mis sur les différents paramètres opératoires qui influencent l’efficacité des procédés électrochimiques, photochimiques et électro-photochimiques dans le traitement des eaux contaminées par les pesticides. De manière globale, l’efficacité des POA est influencée par la nature de l’effluent à traiter (synthétique ou réel), le pH, et le temps de traitement. Les procédés électrochimiques sont influencés par la nature des électrodes et la densité du courant appliquée. Les procédés photochimiques comme la photocatalyse sont influencés par la nature et la concentration du photocatalyseur et par la longueur d’onde de la source lumineuse. Les procédés électro-photochimiques comme l’électro-photocatalyse sont influencés par la nature de la photo-anode. Cette revue de littérature a permis de montrer l’efficacité de POA pour la dégradation totale et la minéralisation partielle de l’atrazine en concentration initiale identique (C0 = 0,1 mM).Pesticides are chemical substances intended to eliminate undesirable and harmful organisms that cause damage to crops and agricultural products. They also help maintain roads and public areas. These uses and emission sources, associated with transfer pathways such as erosion and runoff, explain the presence of pesticides in various environmental compartments. The presence of pesticides in the environment is a source of toxicity to many organisms, particularly to humans who may undergo neurodegenerative and congenital diseases and various forms of cancer. Therefore, it is necessary to control the emission sources, to reduce the transfer of pesticides into the environment and to treat contaminated media using efficient processes such as advanced oxidation processes (AOPs). This review focuses on the various operating parameters that influence the effectiveness of electrochemical, photochemical and electro-photochemical processes during the treatment of water contaminated by pesticides. Generally, the effectiveness of AOPs is influenced by the nature of influent (synthetic or real), the pH and the treatment time. Electrochemical processes are influenced by the nature of the electrodes and current density applied. Photochemical processes such as photocatalytic processes are influenced by the light source, the nature and concentration of the photocatalyst. The electro-photochemical processes such as electro-photocatalysis are influenced by the nature of the photo-anode. This review has shown the effectiveness of AOPs for the total degradation and the partial mineralization of atrazine when considering an identical initial concentration (C0 = 0.1 mM)
Complete mineralization of the antibiotic amoxicillin by electro-Fenton with a BDD anode
On April 30, 2014, the World Health Organization\u2019s
first global report on the presence of antibiotics in
waters focused on their negative consequences, which may
include the growth of microorganisms with antimicrobial
resistance. The b-lactam antibiotic amoxicillin (AMX) is
widely used in human and veterinary medicine, and it has
been recently detected in sewage treatment plants and
effluents. In this paper, the degradation of acidic aqueous
solutions of AMX by electro-Fenton process has been
studied at constant current. Experiments have been performed
in an undivided cell equipped with a carbon-felt
cathode and a Pt or boron-doped diamond (BDD) anode. In
such systems, the organic molecules are mainly oxidized
by hydroxyl radical (\u2022OH) simultaneously formed on the
anode surface from water oxidation as well as in the bulk
from Fenton\u2019s reaction between Fe2? catalyst and electrogenerated
H2O2. The decay and mineralization of AMX
was monitored by means of high performance liquid
chromatography (HPLC) and TOC measurements. The
evolution of the concentration of the final aliphatic
carboxylic acids and inorganic ions like ammonium, nitrate
and sulfate was assessed by HPLC and ion chromatography,
respectively. The effect of the anode material, initial
AMX concentration and current density was thoroughly
studied. The AMX decay always followed a pseudo-firstorder
kinetics using either Pt or BDD, and the apparent rate
constant increased with applied current. A quicker mineralization
was reached with BDD because of the larger
production of active \u2022OH. The absolute rate constant
between hydroxyl radical and AMX determined by the
competition kinetics method using p-hydroxybenzoic acid
as the reference compound was found to be
(2.02 \ub1 0.01) 9 109 M-1 s-1
Electrochemical Treatment of the Antibiotic Sulfachloropyridazine: Kinetics, Reaction Pathways, and Toxicity Evolution
The electro-Fenton treatment of sulfachloropyridazine
(SCP), a model for sulfonamide antibiotics that are widespread in
waters, was performed using cells with a carbon-felt cathode and Pt
or boron-doped diamond (BDD) anode, aiming to present an integral
assessment of the kinetics, electrodegradation byproducts, and toxicity
evolution. H<sub>2</sub>O<sub>2</sub> electrogeneration in the presence
of Fe<sup>2+</sup> yielded <sup>•</sup>OH in the solution bulk,
which acted concomitantly with <sup>•</sup>OH adsorbed at the
anode (BDD(<sup>•</sup>OH)) to promote the oxidative degradation
of SCP (<i>k</i><sub>abs,SCP</sub> = (1.58 ± 0.02)
× 10<sup>9</sup> M<sup>–1</sup> s<sup>–1</sup>)
and its byproducts. A detailed scheme for the complete mineralization
was elucidated. On the basis of the action of <sup>•</sup>OH
onto four different SCP sites, the pathways leading to total decontamination
includes fifteen cyclic byproducts identified by HPLC and GC-MS, five
aliphatic carboxylic acids, and a mixture of Cl<sup>–</sup>, SO<sub>4</sub><sup>2–</sup>, NH<sub>4</sub><sup>+</sup>,
and NO<sub>3</sub><sup>–</sup> that accounted for 90–100%
of initial Cl, S, and N. The time course of byproducts was satisfactorily
correlated with the toxicity profiles determined from inhibition of <i>Vibrio fischeri</i> luminescence. 3-Amino-6-chloropyridazine
and <i>p</i>-benzoquinone were responsible for the increased
toxicity during the first stages. Independent electrolyses revealed
that their toxicity trends were close to those of SCP. The formation
of the carboxylic acids involved a sharp toxicity decrease, thus ensuring
overall detoxification