51 research outputs found

    Azaphosphatrane Cations: Weak Acids, Robust Phase-transfer Catalysts

    Get PDF
    International audienceThe use of azaphosphatrane derivatives, which are the acidic counterparts of the well-known proazaphosphatrane superbases (also named Verkade’s superbases), are found to function as phase-transfer catalysts. In four representative protocols of phase-transfer catalytic reactions—two alkylations of enolates, one generation of carbene, and one oxidation of an electrophilic alkene—azaphosphatranes act as catalysts in biphasic heterogeneous media

    Nouvelles applications des proazaphosphatranes et molécules apparentées : vers la catalyse en espace confiné et en milieu hétérogÚne

    Get PDF
    The work described in this PhD thesis deals with the chemistry of proazaphosphatrane-type superbases, which are highly reactive bicyclic phosphorous systems largely applied in catalysis. The main goal of these investigations was to devise new applications for their use in catalysis. In this way, several strategies were followed, with an emphasis on their molecular confinement and use in interfacial catalytic systems. In the first part, the manuscript describes the synthesis and characterisation of a supramolecular proazaphosphatrane obtained via the enclosing of a proazaphosphatrane moiety in a hemicryptophane-type macrobicyclic cavity. In parallel, the semi-preparative scale resolution of two macrobicyclic intermediates allowed us to assign their absolute configurations. In the second part, the synthesis and characterisation of a new class of superbases supported on mesoporous silica was achieved. The synthesis was followed by their application in base-catalysed organic reactions. The last part reports the use of their conjugate acids, or azaphosphatranes, in phase transfer catalysis. Their usefulness as achiral phase transfer agents in four relevant reactions was thus determined. The thesis ends with an introduction into asymmetric phase transfer catalysis, using enantiopure azaphosphatranes.Le travail qui est dĂ©crit dans ce manuscrit de thĂšse traite de la chimie des superbases de type proazaphosphatranes, systĂšmes phosphorĂ©s bicycliques trĂšs utilisĂ©s en catalyse. L’objectif des investigations qui ont Ă©tĂ© menĂ©es Ă  Ă©tĂ© d’ouvrir de nouvelles voies d’applications de ces catalyseurs. Afin de satisfaire cet objectif, plusieurs stratĂ©gies ont Ă©tĂ© envisagĂ©es. D’une part par la mise en confinement de la structure proazaphosphatrane et l’étude de l’influence de ce confinement sur la rĂ©activitĂ© intrinsĂšque du proazaphosphatrane, et d’autre part par la catalyse en conditions bi-phasiques, que ce soit Ă  l’interface entre une phase liquide et un solide ou entre deux phases liquides non-miscibles. Les recherches se sont orientĂ©es dans un premier temps sur la synthĂšse et la caractĂ©risation complĂšte d’un proazaphosphatrane supramolĂ©culaire, obtenu par la fonctionnalisation par un proazaphosphatrane de la cavitĂ© supramolĂ©culaire d’un rĂ©cepteur macrobicyclique. Les sĂ©parations semi-prĂ©paratives des deux Ă©nantiomĂšres d’un intermĂ©diaire et de la molĂ©cule phosphorĂ©e finale ont Ă©galement Ă©tĂ© rĂ©alisĂ©es, sĂ©parations qui ont permis de rĂ©aliser l’attribution des configurations absolues des deux structures macrobicycliques. La synthĂšse d’une famille de catalyseurs de type proazaphosphatrane supportĂ©s sur silice mĂ©soporeuse a ensuite Ă©tĂ© rĂ©alisĂ©e, suivie de sa caractĂ©risation texturale et structurale par les procĂ©dĂ©s physico-chimiques habituels, et enfin de sa mise en application dans des rĂ©actions d’intĂ©rĂȘts de la synthĂšse organique. En dernier lieu, l’exploitation de la forme acide conjuguĂ©e des proazaphosphatranes, dite forme azaphosphatrane, dans des rĂ©actions de catalyse par transfert de phase a Ă©tĂ© entreprise. Il a ainsi put ĂȘtre dĂ©montrĂ© leur activitĂ© en tant qu’agent de transfert dans le cadre de quatre rĂ©actions significatives de la catalyse par transfert de phase en version racĂ©mique. Ce travail de thĂšse s’est finalement terminĂ© par une ouverture vers la catalyse par transfert de phase en version asymĂ©trique, par le biais de l’utilisation d’azaphosphatranes chiraux Ă©nantiopurs

    New applications of proazaphosphatranes (Verkade's Superbases) and related molecules : toward confined space and heterogeneous catalysis

    No full text
    Le travail qui est dĂ©crit dans ce manuscrit de thĂšse traite de la chimie des superbases de type proazaphosphatranes, systĂšmes phosphorĂ©s bicycliques trĂšs utilisĂ©s en catalyse. L’objectif des investigations qui ont Ă©tĂ© menĂ©es Ă  Ă©tĂ© d’ouvrir de nouvelles voies d’applications de ces catalyseurs. Afin de satisfaire cet objectif, plusieurs stratĂ©gies ont Ă©tĂ© envisagĂ©es. D’une part par la mise en confinement de la structure proazaphosphatrane et l’étude de l’influence de ce confinement sur la rĂ©activitĂ© intrinsĂšque du proazaphosphatrane, et d’autre part par la catalyse en conditions bi-phasiques, que ce soit Ă  l’interface entre une phase liquide et un solide ou entre deux phases liquides non-miscibles. Les recherches se sont orientĂ©es dans un premier temps sur la synthĂšse et la caractĂ©risation complĂšte d’un proazaphosphatrane supramolĂ©culaire, obtenu par la fonctionnalisation par un proazaphosphatrane de la cavitĂ© supramolĂ©culaire d’un rĂ©cepteur macrobicyclique. Les sĂ©parations semi-prĂ©paratives des deux Ă©nantiomĂšres d’un intermĂ©diaire et de la molĂ©cule phosphorĂ©e finale ont Ă©galement Ă©tĂ© rĂ©alisĂ©es, sĂ©parations qui ont permis de rĂ©aliser l’attribution des configurations absolues des deux structures macrobicycliques. La synthĂšse d’une famille de catalyseurs de type proazaphosphatrane supportĂ©s sur silice mĂ©soporeuse a ensuite Ă©tĂ© rĂ©alisĂ©e, suivie de sa caractĂ©risation texturale et structurale par les procĂ©dĂ©s physico-chimiques habituels, et enfin de sa mise en application dans des rĂ©actions d’intĂ©rĂȘts de la synthĂšse organique. En dernier lieu, l’exploitation de la forme acide conjuguĂ©e des proazaphosphatranes, dite forme azaphosphatrane, dans des rĂ©actions de catalyse par transfert de phase a Ă©tĂ© entreprise. Il a ainsi put ĂȘtre dĂ©montrĂ© leur activitĂ© en tant qu’agent de transfert dans le cadre de quatre rĂ©actions significatives de la catalyse par transfert de phase en version racĂ©mique. Ce travail de thĂšse s’est finalement terminĂ© par une ouverture vers la catalyse par transfert de phase en version asymĂ©trique, par le biais de l’utilisation d’azaphosphatranes chiraux Ă©nantiopurs.The work described in this PhD thesis deals with the chemistry of proazaphosphatrane-type superbases, which are highly reactive bicyclic phosphorous systems largely applied in catalysis. The main goal of these investigations was to devise new applications for their use in catalysis. In this way, several strategies were followed, with an emphasis on their molecular confinement and use in interfacial catalytic systems. In the first part, the manuscript describes the synthesis and characterisation of a supramolecular proazaphosphatrane obtained via the enclosing of a proazaphosphatrane moiety in a hemicryptophane-type macrobicyclic cavity. In parallel, the semi-preparative scale resolution of two macrobicyclic intermediates allowed us to assign their absolute configurations. In the second part, the synthesis and characterisation of a new class of superbases supported on mesoporous silica was achieved. The synthesis was followed by their application in base-catalysed organic reactions. The last part reports the use of their conjugate acids, or azaphosphatranes, in phase transfer catalysis. Their usefulness as achiral phase transfer agents in four relevant reactions was thus determined. The thesis ends with an introduction into asymmetric phase transfer catalysis, using enantiopure azaphosphatranes

    Nouvelles applications des proazaphosphatranes et molécules apparentées (vers la catalyse en espace confiné et en milieu hétérogÚne)

    No full text
    Le travail qui est dĂ©crit dans ce manuscrit de thĂšse traite de la chimie des superbases de type proazaphosphatranes, systĂšmes phosphorĂ©s bicycliques trĂšs utilisĂ©s en catalyse. L objectif des investigations qui ont Ă©tĂ© menĂ©es Ă  Ă©tĂ© d ouvrir de nouvelles voies d applications de ces catalyseurs. Afin de satisfaire cet objectif, plusieurs stratĂ©gies ont Ă©tĂ© envisagĂ©es. D une part par la mise en confinement de la structure proazaphosphatrane et l Ă©tude de l influence de ce confinement sur la rĂ©activitĂ© intrinsĂšque du proazaphosphatrane, et d autre part par la catalyse en conditions bi-phasiques, que ce soit Ă  l interface entre une phase liquide et un solide ou entre deux phases liquides non-miscibles. Les recherches se sont orientĂ©es dans un premier temps sur la synthĂšse et la caractĂ©risation complĂšte d un proazaphosphatrane supramolĂ©culaire, obtenu par la fonctionnalisation par un proazaphosphatrane de la cavitĂ© supramolĂ©culaire d un rĂ©cepteur macrobicyclique. Les sĂ©parations semi-prĂ©paratives des deux Ă©nantiomĂšres d un intermĂ©diaire et de la molĂ©cule phosphorĂ©e finale ont Ă©galement Ă©tĂ© rĂ©alisĂ©es, sĂ©parations qui ont permis de rĂ©aliser l attribution des configurations absolues des deux structures macrobicycliques. La synthĂšse d une famille de catalyseurs de type proazaphosphatrane supportĂ©s sur silice mĂ©soporeuse a ensuite Ă©tĂ© rĂ©alisĂ©e, suivie de sa caractĂ©risation texturale et structurale par les procĂ©dĂ©s physico-chimiques habituels, et enfin de sa mise en application dans des rĂ©actions d intĂ©rĂȘts de la synthĂšse organique. En dernier lieu, l exploitation de la forme acide conjuguĂ©e des proazaphosphatranes, dite forme azaphosphatrane, dans des rĂ©actions de catalyse par transfert de phase a Ă©tĂ© entreprise. Il a ainsi put ĂȘtre dĂ©montrĂ© leur activitĂ© en tant qu agent de transfert dans le cadre de quatre rĂ©actions significatives de la catalyse par transfert de phase en version racĂ©mique. Ce travail de thĂšse s est finalement terminĂ© par une ouverture vers la catalyse par transfert de phase en version asymĂ©trique, par le biais de l utilisation d azaphosphatranes chiraux Ă©nantiopurs.The work described in this PhD thesis deals with the chemistry of proazaphosphatrane-type superbases, which are highly reactive bicyclic phosphorous systems largely applied in catalysis. The main goal of these investigations was to devise new applications for their use in catalysis. In this way, several strategies were followed, with an emphasis on their molecular confinement and use in interfacial catalytic systems. In the first part, the manuscript describes the synthesis and characterisation of a supramolecular proazaphosphatrane obtained via the enclosing of a proazaphosphatrane moiety in a hemicryptophane-type macrobicyclic cavity. In parallel, the semi-preparative scale resolution of two macrobicyclic intermediates allowed us to assign their absolute configurations. In the second part, the synthesis and characterisation of a new class of superbases supported on mesoporous silica was achieved. The synthesis was followed by their application in base-catalysed organic reactions. The last part reports the use of their conjugate acids, or azaphosphatranes, in phase transfer catalysis. Their usefulness as achiral phase transfer agents in four relevant reactions was thus determined. The thesis ends with an introduction into asymmetric phase transfer catalysis, using enantiopure azaphosphatranes.LYON-ENS Sciences (693872304) / SudocSudocFranceF

    Encaging the Verkade’s Superbases: Thermodynamic and Kinetic Consequences

    No full text
    International audienceProazaphosphatranes, also known as Verkade’s superbases, are nonionic species, which exhibit catalytic properties for a wide range of reactions. The properly designed host molecule 3 and its protonated counterpart [3·H]+Cl− were synthesized to study how confinement can modify the stability and the reactivity of a Verkade’s superbase. The results show that the encapsulation does not alter the strong basicity of the proazaphosphatrane, but dramatically decreases the rate of proton transfer

    Homogeneous and silica-supported azidoproazaphosphatranes as efficient catalysts for the synthesis of substituted coumarins

    No full text
    International audienceHomogeneous and silica-supported azidoproazaphosphatranes derived from the Verkade's superbase catalyze the synthesis of substituted coumarins with moderate to good yields and high selectivity

    A New Class of C3-Symmetrical Hemicryptophane Hosts: Triamide- and Tren-hemicryptophanes

    No full text
    International audienceThe first hemicryptophanes derived from tris(N-alkyl-carbamoylmethyl)amine and tris(2-aminoethyl)amine (tren) have been synthesized following a single synthetic pathway that allows the subsequent formation of the two heteroditopic hosts 3 and 4. X-ray crystal structures show a well-defined cavity encapsulating a solvent guest for both compounds emphasizing their complexation properties

    1,4:3,6-Dianhydrohexitols: Original Platform for the Design of Biobased Polymers Using Robust, Efficient, and Orthogonal Chemistry

    No full text
    International audience1,4:3,6-Dianhydrohexitols (DAHs) are nontoxic and sustainable diols that have been extensively applied as monomers for the preparation of polymer materials by step-growth polymerization processes. The presence of two reactive alcohol groups was exploited to design a library of symmetric and asymmetric stereocontrolled alkyne- and/or azide-functionalized AA/BB and AB monomers suitable for thermal or copper(I)-catalyzed azide-alkyne cycloaddition (TAAC and CuAAC). Step-growth polymerization of these monomers yielded a series of linear polytriazoles as well as partially biosourced networks using a combination of AB + A2B2 derivatives. Characterization of the resulting materials allowed for the establishment of a thorough structure--property relationship emphasizing the impact of monomer stereo chemistry and cycloaddition regioselectivity on materials properties

    Absolute Configuration and Enantiodifferentiation of a Hemicryptophane Incorporating an Azaphosphatrane Moiety

    No full text
    International audienceThe hemicryptophane racemate (±)-M-1, P-1 was optically resolved by semipreparative HPLC on Chiralpak IC column. The absolute configuration of each isolated enantiomer was established from the analysis of their electronic circular dichroism spectra. Enantiodifferentiation of the chiral cationic cage (±)-M-1, P-1 was evidenced in solution using Δ-TRISPHAT as chiral solvating agent, and the diastereomeric associations were observed in 1H and 31P NMR spectra. Chirality 24:1077–1081, 2012. © 2012 Wiley Periodicals, Inc
    • 

    corecore