18 research outputs found

    Why we shouldn’t blame women for gender disparity in academia : perspectives of women in zoology

    Get PDF
    The following letter, from a network of women zoologists, is a reply to the article of AlShebli et al. (2020), which suggests that female protégés reap more benefits when mentored by men and concludes that female mentors hinder the success of their female protégés and the quality of their impact. This contribution has two parts. First, we highlight the most relevant methodological flaws which, in our opinion, may have impacted the conclusions of AlShebli et al. (2020). Second, we discuss issues pertaining to women in science, bring a perspective of Women in Zoology and discuss how current diversity policies are positively changing our field

    Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard

    No full text
    Temperature increases can impact biodiversity and predicting their effects is one of the main challenges facing global climate-change research. Ectotherms are sensitive to temperature change and, although predictions indicate that tropical species are highly vulnerable to global warming, they remain one of the least studied groups with respect to the extent of physiological variation and local extinction risks. We model the extinction risks for a tropical heliothermic teiid lizard (Kentropyx calcarata) integrating previously obtained information on intraspecific phylogeographic structure, eco-physiological traits and contemporary species distributions in the Amazon rainforest and its ecotone to the Cerrado savannah. We also investigated how thermal-biology traits vary throughout the species' geographic range and the consequences of such variation for lineage vulnerability. We show substantial variation in thermal tolerance of individuals among thermally distinct sites. Thermal critical limits were highly correlated with operative environmental temperatures. Our physiological/climatic model predicted relative extinction risks for local populations within clades of K. calcarata for 2050 ranging between 26.1% and 70.8%, while for 2070, extinction risks ranged from 52.8% to 92.8%. Our results support the hypothesis that tropical-lizard taxa are at high risk of local extinction caused by increasing temperatures. However, the thermo-physiological differences found across the species' distribution suggest that local adaptation may allow persistence of this tropical ectotherm in global warming scenarios. These results will serve as basis to further research to investigate the strength of local adaptation to climate change. Persistence of Kentropyx calcarata also depends on forest preservation, but the Amazon rainforest is currently under high deforestation rates. We argue that higher conservation priority is necessary so the Amazon rainforest can fulfill its capacity to absorb the impacts of temperature increase on tropical ectotherms during climate change

    We’re building it up to burn it down: fire occurrence and fire-related climatic patterns in Brazilian biomes

    No full text
    Background Terrestrial biomes in South America are likely to experience a persistent increase in environmental temperature, possibly combined with moisture reduction due to climate change. In addition, natural fire ignition sources, such as lightning, can become more frequent under climate change scenarios since favourable environmental conditions are likely to occur more often. In this sense, changes in the frequency and magnitude of natural fires can impose novel stressors on different ecosystems according to their adaptation to fires. By focusing on Brazilian biomes, we use an innovative combination of techniques to quantify fire persistence and occurrence patterns over time and evaluate climate risk by considering key fire-related climatic characteristics. Then, we tested four major hypotheses considering the overall characteristics of fire-dependent, fire-independent, and fire-sensitive biomes concerning (1) fire persistence over time; (2) the relationship between climate and fire occurrence; (3) future predictions of climate change and its potential impacts on fire occurrence; and (4) climate risk faced by biomes. Methods We performed a Detrended Fluctuation Analysis to test whether fires in Brazilian biomes are persistent over time. We considered four bioclimatic variables whose links to fire frequency and intensity are well-established to assess the relationship between climate and fire occurrence by confronting these climate predictors with a fire occurrence dataset through correlative models. To assess climate risk, we calculated the climate hazard, sensitivity, resilience, and vulnerability of Brazilian biomes, and then we multiplied the Biomes’ vulnerability index by the hazards. Results Our results indicate a persistent behaviour of fires in all Brazilian biomes at almost the same rates, which could represent human-induced patterns of fire persistence. We also corroborated our second hypothesis by showing that most fire-dependent biomes presented high thermal suitability to fire, while the fire-independent biome presented intermediate suitability and fire-sensitive biomes are the least suitable for fire occurrence. The third hypothesis was partially corroborated since fire-dependent and independent biomes are likely to increase their thermal suitability to fire, while fire-sensitive biomes are likely to present stable-to-decreasing thermal suitability in the future. Finally, our fourth hypothesis was partially corroborated since most fire-dependent biomes presented low climate risk, while the fire-independent biome presented a high risk and the fire-sensitive biomes presented opposite trends. In summary, while the patterns of fire persistence and fire occurrence over time are more likely to be related to human-induced fires, key drivers of burned areas are likely to be intensified across Brazilian biomes in the future, potentially increasing the magnitude of the fires and harming the biomes’ integrity

    Thermal physiology of Amazonian lizards (Reptilia: Squamata).

    Get PDF
    We summarize thermal-biology data of 69 species of Amazonian lizards, including mode of thermoregulation and field-active body temperatures (Tb). We also provide new data on preferred temperatures (Tpref), voluntary and thermal-tolerance ranges, and thermal-performance curves (TPC's) for 27 species from nine sites in the Brazilian Amazonia. We tested for phylogenetic signal and pairwise correlations among thermal traits. We found that species generally categorized as thermoregulators have the highest mean values for all thermal traits, and broader ranges for Tb, critical thermal maximum (CTmax) and optimal (Topt) temperatures. Species generally categorized as thermoconformers have large ranges for Tpref, critical thermal minimum (CTmin), and minimum voluntary (VTmin) temperatures for performance. Despite these differences, our results show that all thermal characteristics overlap between both groups and suggest that Amazonian lizards do not fit into discrete thermoregulatory categories. The traits are all correlated, with the exceptions of (1) Topt, which does not correlate with CTmax, and (2) CTmin, and correlates only with Topt. Weak phylogenetic signals for Tb, Tpref and VTmin indicate that these characters may be shaped by local environmental conditions and influenced by phylogeny. We found that open-habitat species perform well under present environmental conditions, without experiencing detectable thermal stress from high environmental temperatures induced in lab experiments. For forest-dwelling lizards, we expect warming trends in Amazonia to induce thermal stress, as temperatures surpass the thermal tolerances for these species

    Time Of Activity is a Better Predictor of The Distribution of a Tropical Lizard than Pure Environmental Temperatures

    No full text
    © 2020 Nordic Society Oikos. Published by John Wiley & Sons Ltd Environmental temperatures influence ectotherms’ physiology and capacity to perform activities necessary for survival and reproduction. Time available to perform those activities is determined by thermal tolerances and environmental temperatures. Estimates of activity time might enhance our ability to predict suitable areas for species’ persistence in face of climate warming, compared to the exclusive use of environmental temperatures, without considering thermal tolerances. We compare the ability of environmental temperatures and estimates of activity time to predict the geographic distribution of a tropical lizard, Tropidurus torquatus. We compared 105 estimates of activity time, resulting from the combination of four methodological decisions: 1) how to estimate daily environmental temperature variation (modeling a sinusoid wave ranging from monthly minimum to maximum temperature, extrapolating from operative temperatures measured in field or using biophysical projections of microclimate)? 2) In which temperature range are animals considered active? 3) Should these ranges be determined from body temperatures obtained in laboratory or in field? And 4) should thermoregulation simulations be included in estimations? We show that models using estimates of activity time made with the sinusoid and biophysical methods had higher predictive accuracy than those using environmental temperatures alone. Estimates made using the central 90% of temperatures measured in a thermal gradient as the temperature range for activity also ranked higher than environmental temperatures. Thermoregulation simulations did not improve model accuracy. Precipitation ranked higher than thermally related predictors. Activity time adds important information to distribution modeling and should be considered as a predictor in studies of the distribution of ectotherms. The distribution of T. torquatus is restricted by precipitation and by the effect of lower temperatures on their time of activity and climate warming could lead to range expansion. We provide an R package ‘Mapinguari’ with tools to generate spatial predictors based on the processes described herein

    Time Of Activity is a Better Predictor of The Distribution of a Tropical Lizard than Pure Environmental Temperatures

    No full text
    © 2020 Nordic Society Oikos. Published by John Wiley & Sons Ltd Environmental temperatures influence ectotherms’ physiology and capacity to perform activities necessary for survival and reproduction. Time available to perform those activities is determined by thermal tolerances and environmental temperatures. Estimates of activity time might enhance our ability to predict suitable areas for species’ persistence in face of climate warming, compared to the exclusive use of environmental temperatures, without considering thermal tolerances. We compare the ability of environmental temperatures and estimates of activity time to predict the geographic distribution of a tropical lizard, Tropidurus torquatus. We compared 105 estimates of activity time, resulting from the combination of four methodological decisions: 1) how to estimate daily environmental temperature variation (modeling a sinusoid wave ranging from monthly minimum to maximum temperature, extrapolating from operative temperatures measured in field or using biophysical projections of microclimate)? 2) In which temperature range are animals considered active? 3) Should these ranges be determined from body temperatures obtained in laboratory or in field? And 4) should thermoregulation simulations be included in estimations? We show that models using estimates of activity time made with the sinusoid and biophysical methods had higher predictive accuracy than those using environmental temperatures alone. Estimates made using the central 90% of temperatures measured in a thermal gradient as the temperature range for activity also ranked higher than environmental temperatures. Thermoregulation simulations did not improve model accuracy. Precipitation ranked higher than thermally related predictors. Activity time adds important information to distribution modeling and should be considered as a predictor in studies of the distribution of ectotherms. The distribution of T. torquatus is restricted by precipitation and by the effect of lower temperatures on their time of activity and climate warming could lead to range expansion. We provide an R package ‘Mapinguari’ with tools to generate spatial predictors based on the processes described herein
    corecore