16 research outputs found

    A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability

    Get PDF
    SummaryCircadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here, we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons. This current is driven by the rhythmic expression of NCA localization factor-1, linking the molecular clock to ion channel function. In the evening, basal potassium currents peak to silence clock neurons. Remarkably, daily antiphase cycles of sodium and potassium currents also drive mouse clock neuron rhythms. Thus, we reveal an evolutionarily ancient strategy for the neural mechanisms that govern daily sleep and wake

    Interactions of SNPs in Folate Metabolism Related Genes on Prostate Cancer Aggressiveness in European Americans and African Americans

    Get PDF
    Background: Studies showed that folate and related single nucleotide polymorphisms (SNPs) could predict prostate cancer (PCa) risk. However, little is known about the interactions of folate-related SNPs associated with PCa aggressiveness. The study’s objective is to evaluate SNP–SNP interactions among the DHFR 19-bp polymorphism and 10 SNPs in folate metabolism and the one-carbon metabolism pathway associated with PCa aggressiveness. Methods: We evaluated 1294 PCa patients, including 690 European Americans (EAs) and 604 African Americans (AAs). Both individual SNP effects and pairwise SNP–SNP interactions were analyzed. Results: None of the 11 individual polymorphisms were significant for EAs and AAs. Three SNP–SNP interaction pairs can predict PCa aggressiveness with a medium to large effect size. For the EA PCa patients, the interaction between rs1801133 (MTHFR) and rs2236225 (MTHFD1), and rs1801131 (MTHFR) and rs7587117 (SLC4A5) were significantly associated with aggressive PCa. For the AA PCa patients, the interaction of DHFR-19bp polymorphism and rs4652 (LGALS3) was significantly associated with aggressive PCa. Conclusions: These SNP–SNP interactions in the folate metabolism-related genes have a larger impact than SNP individual effects on tumor aggressiveness for EA and AA PCa patients. These findings can provide valuable information for potential biological mechanisms of PCa aggressiveness

    Identification of calcium-binding proteins associated with the human sperm plasma membrane

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The precise composition of the human sperm plasma membrane, the molecular interactions that define domain specific functions, and the regulation of membrane associated proteins during the capacitation process, still remain to be fully understood. Here, we investigated the repertoire of calcium-regulated proteins associated with the human sperm plasma membrane.</p> <p>Methods</p> <p>Surface specific radioiodination was combined with two-dimensional gel electrophoresis, a 45Ca-overlay assay, computer assisted image analysis and mass spectrometry to identify calcium-binding proteins exposed on the human sperm surface.</p> <p>Results</p> <p>Nine acidic 45Ca-binding sperm proteins were excised from stained preparative 2D gels and identified by mass spectrometry. Five of the calcium binding proteins; HSPA2 (HSP70-1), HSPA5 (Bip), HYOU1 (ORP150), serum amyloid P-component (SAP) and protein kinase C substrate 80K-H (80K-H) were found to be accessible to Iodo-Bead catalyzed 125I-labelling on the surface of intact human sperm. Agglutination and immunofluorescence analysis confirmed that SAP is situated on the plasma membrane of intact, motile sperm as well as permeabilized cells. Western blot analysis showed increased phosphorylation of human sperm 80K-H protein following in vitro capacitation. This is the first demonstration of the 80K-H protein in a mammalian sperm.</p> <p>Conclusion</p> <p>The presence of SAP on the surface of mature sperm implies that SAP has a physiological role in reproduction, which is thought to be in the removal of spermatozoa from the female genital tract via phagocytosis. Since 80K-H is a Ca2+-sensor recently implicated in the regulation of both inositol 1,4,5-trisphosphate receptor and transient receptor potential (TRP) cation channel activities, its detection in sperm represents the first direct signaling link between PKC and store-operated calcium channels identified in human sperm.</p

    Expression characterization and functional implication of the collagen-modifying Leprecan proteins in mouse gonadal tissue and mature sperm

    No full text
    The Leprecan protein family which includes the prolyl 3-hydroxylase enzymes (P3H1, P3H2, and P3H3), the closely related cartilage-associated protein (CRTAP), and SC65 (Synaptonemal complex 65, aka P3H4, LEPREL4), is involved in the post-translational modification of fibrillar collagens. Mutations in CRTAP, P3H1 and P3H2 cause human genetic diseases. We recently showed that SC65 forms a stable complex in the endoplasmic reticulum with P3H3 and lysyl hydroxylase 1 and that loss of this complex leads to defective collagen lysyl hydroxylation and causes low bone mass and skin fragility. Interestingly, SC65 was initially described as a synaptonemal complex-associated protein, suggesting a potential additional role in germline cells. In the present study, we describe the expression of SC65, CRTAP and other Leprecan proteins in postnatal mouse reproductive organs. We detect SC65 expression in peritubular cells of testis up to 4 weeks of age but not in cells within seminiferous tubules, while its expression is maintained in ovarian follicles until adulthood. Similar to bone and skin, SC65 and P3H3 are also tightly co-expressed in testis and ovary. Moreover, we show that CRTAP, a protein normally involved in collagen prolyl 3-hydroxylation, is highly expressed in follicles and stroma of the ovary and in testes interstitial cells at 4 weeks of age, germline cells and mature sperm. Importantly, CrtapKO mice have a mild but significant increase in morphologically abnormal mature sperm (17% increase compared to WT). These data suggest a role for the Leprecans in the post-translational modification of collagens expressed in the stroma of the reproductive organs. While we could not confirm that SC65 is part of the synaptonemal complex, the expression of CRTAP in the seminiferous tubules and in mature sperm suggest a role in the testis germ cell lineage and sperm morphogenesis
    corecore