4,875 research outputs found

    Risk-informed decision-making in the presence of epistemic uncertainty

    Get PDF
    International audienceAn important issue in risk analysis is the distinction between epistemic and aleatory uncertainties. In this paper, the use of distinct representation formats for aleatory and epistemic uncertainties is advocated, the latter being modelled by sets of possible values. Modern uncertainty theories based on convex sets of probabilities are known to be instrumental for hybrid representations where aleatory and epistemic components of uncertainty remain distinct. Simple uncertainty representation techniques based on fuzzy intervals and p-boxes are used in practice. This paper outlines a risk analysis methodology from elicitation of knowledge about parameters to decision. It proposes an elicitation methodology where the chosen representation format depends on the nature and the amount of available information. Uncertainty propagation methods then blend Monte-Carlo simulation and interval analysis techniques. Nevertheless, results provided by these techniques, often in terms of probability intervals, may be too complex to interpret for a decision-maker and we therefore propose to compute a unique indicator of the likelihood of risk, called confidence index. It explicitly accounts for the decision-maker's attitude in the face of ambiguity. This step takes place at the end of the risk analysis process, when no further collection of evidence is possible that might reduce the ambiguity due to epistemic uncertainty. This last feature stands in contrast with the Bayesian methodology, where epistemic uncertainties on input parameters are modelled by single subjective probabilities at the beginning of the risk analysis process

    Mucus and ciliated cells of human lung : splitting strategies for particle methods and 3D stokes flows

    Get PDF
    Lung walls are covered by a film of mucus, whose motility is fundamental for a healthy behavior. Indeed, mucus traps inhaled aerosols (bacteria, dust, ...), and moves from smallest to largest airways, until it reaches esophagus where is it swallowed or expectorated. A lot of biological parameters are responsible for mucus motion [6], such as the vibrations of ciliated cells covering lung walls (cilia height, frequency, ...), mucus/air interaction, water saturation in mucin network, mucus thickness
    corecore