100 research outputs found

    Implementing Program and Department Advisory Boards

    Get PDF
    Presenters will guide participants through a process to establish and maintain an advisory board for an academic program or department and will leave with ideas, suggestions, and a potential plan to share with faculty. Advisory board participation in assessment and improving academic curricula will be highlighted

    The Ursinus Weekly, November 10, 1966

    Get PDF
    Delta Pi\u27s queen reigns at annual Homecoming • U.C. students aid delinquents • Founder\u27s Day emphasizes church relationship: Three honorary degrees conferred • U.C. poetry reading • CBS reporter to speak at Forum • Behind the scenes innovations • Faculty team at War College • Local businesses educate employees • Editorial: Salvation; The moon is down • On cinnamon and seething • Letters to the editor: If you can\u27t win fairly, cheat? • Book review • New faculty building announced; Program gains momentum • Freeland\u27s ghost laments disrespect for traditions • Lyndon Johnson in Collegeville? Recent visit proves possibility: Receives giant welcome from Polish • Dickinson tops Bears in fourth quarter, 13-10 • Booters blank Delaware; Lose to Swarthmore, Haverford • Alfred whips UC, 60-8 • Cross country team wins seven of first eight • Swarthmore ruins Homecoming, 21-6 • Hockey team undefeated; Trips W.C. 1-0 • Ursinus fares well at All College • Intramural report • Ursinus hockey team beats Wilson 3-0 • First and third teams combine to down Temple 5-0 • Greek gleanings • Chapel schedulehttps://digitalcommons.ursinus.edu/weekly/1193/thumbnail.jp

    LPS- induced inflammation exacerbates phospho-tau pathology in rTg4510 mice

    Get PDF
    Inflammation and microglial activation are associated with Alzheimer's disease (AD) pathology. Somewhat surprisingly, injection of a prototypical inflammatory agent, lipopolysaccharide (LPS) into brains of amyloid precursor protein (APP) transgenic mice clears some of the pre-existing amyloid deposits. It is less well understood how brain inflammation modulates tau pathology in the absence of Aβ. These studies examined the role of LPS-induced inflammation on tau pathology. We used transgenic rTg4510 mice, which express the P301L mutation (4R0N TauP301L) and initiate tau pathology between 3-5 months of age. First, we found an age-dependent increase in several markers of microglial activation as these rTg4510 mice aged and tau tangles accumulated. LPS injections into the frontal cortex and hippocampus induced significant activation of CD45 and arginase 1 in rTg4510 and non-transgenic mice. In addition, activation of YM1 by LPS was exaggerated in transgenic mice relative to non-transgenic animals. Expression of Ser199/202 and phospho-tau Ser396 was increased in rTg4510 mice that received LPS compared to vehicle injections. However, the numbers of silver-positive neurons, implying presence of more pre- and mature tangles, was not significantly affected by LPS administration. These data suggest that inflammatory stimuli can facilitate tau phosphorylation. Coupled with prior results demonstrating clearance of Aβ by similar LPS injections, these results suggest that brain inflammation may have opposing effects on amyloid and tau pathology, possibly explaining the failures (to date) of anti-inflammatory therapies in AD patients

    Aberrant \u3ci\u3eAZIN2\u3c/i\u3e and Polyamine Metabolism Precipitates Tau Neuropathology

    Get PDF
    Tauopathies display a spectrum of phenotypes from cognitive to affective behavioral impairments; however, mechanisms promoting tau pathology and how tau elicits behavioral impairment remain unclear. We report a unique interaction between polyamine metabolism, behavioral impairment, and tau fate. Polyamines are ubiquitous aliphatic molecules that support neuronal function, axonal integrity, and cognitive processing. Transient increases in polyamine metabolism hallmark the cell’s response to various insults, known as the polyamine stress response (PSR). Dysregulation of gene transcripts associated with polyamine metabolism in Alzheimer’s disease (AD) brains were observed, and we found that ornithine decarboxylase antizyme inhibitor 2 (AZIN2) increased to the greatest extent. We showed that sustained AZIN2 overexpression elicited a maladaptive PSR in mice with underlying tauopathy (MAPT P301S; PS19). AZIN2 also increased acetylpolyamines, augmented tau deposition, and promoted cognitive and affective behavioral impairments. Higher-order polyamines displaced microtubule-associated tau to facilitate polymerization but also decreased tau seeding and oligomerization. Conversely, acetylpolyamines promoted tau seeding and oligomers. These data suggest that tauopathies launch an altered enzymatic signature that endorses a feed-forward cycle of disease progression. Taken together, the tau-induced PSR affects behavior and disease continuance, but may also position the polyamine pathway as a potential entry point for plausible targets and treatments of tauopathy, including AD

    Epitope analysis following active immunization with tau proteins reveals immunogens implicated in tau pathogenesis

    Full text link
    Abstract Background Abnormal tau hyperphosphorylation and its accumulation into intra-neuronal neurofibrillary tangles are linked to neurodegeneration in Alzheimer’s disease and similar tauopathies. One strategy to reduce accumulation is through immunization, but the most immunogenic tau epitopes have so far remained unknown. To fill this gap, we immunized mice with recombinant tau to build a map of the most immunogenic tau epitopes. Methods Non-transgenic and rTg4510 tau transgenic mice aged 5 months were immunized with either human wild-type tau (Wt, 4R0N) or P301L tau (4R0N). Each protein was formulated in Quil A adjuvant. Sera and splenocytes of vaccinated mice were collected to assess the humoral and cellular immune responses to tau. We employed a peptide array assay to identify the most effective epitopes. Brain histology was utilized to measure the effects of vaccination on tau pathology and inflammation. Results Humoral immune responses following immunization demonstrated robust antibody titers (up to 1:80,000 endpoint titers) to each tau species in both mice models. The number of IFN-γ producing T cells and their proliferation were also increased in splenocytes from immunized mice, indicating an increased cellular immune response, and tau levels and neuroinflammation were both reduced. We identified five immunogenic motifs within either the N-terminal (9-15 and 21-27 amino acids), proline rich (168-174 and 220-228 amino acids), or the C-terminal regions (427-438 amino acids) of the wild-type and P301L tau protein sequence. Conclusions Our study identifies five previously unknown immunogenic motifs of wild-type and mutated (P301L) tau protein. Immunization with both proteins resulted in reduced tau pathology and neuroinflammation in a tau transgenic model, supporting the efficacy of tau immunotherapy in tauopathy.http://deepblue.lib.umich.edu/bitstream/2027.42/109522/1/12974_2014_Article_152.pd

    Neuronal sensitivity to TDP-43 overexpression is dependent on timing of induction

    Get PDF
    Ubiquitin-immunoreactive neuronal inclusions composed of TAR DNA binding protein of 43 kDa (TDP-43) are a major pathological feature of frontotemporal lobar degeneration (FTLD-TDP). In vivo studies with TDP-43 knockout mice have suggested that TDP-43 plays a critical, although undefined role in development. In the current report, we generated transgenic mice that conditionally express wild-type human TDP-43 (hTDP-43) in the forebrain and established a paradigm to examine the sensitivity of neurons to TDP-43 overexpression at different developmental stages. Continuous TDP-43 expression during early neuronal development produced a complex phenotype, including aggregation of phospho-TDP-43, increased ubiquitin immunoreactivity, mitochondrial abnormalities, neurodegeneration and early lethality. In contrast, later induction of hTDP-43 in the forebrain of weaned mice prevented early death and mitochondrial abnormalities while yielding salient features of FTLD-TDP, including progressive neurodegeneration and ubiquitinated, phospho-TDP-43 neuronal cytoplasmic inclusions. These results suggest that neurons in the developing forebrain are extremely sensitive to TDP-43 overexpression and that timing of TDP-43 overexpression in transgenic mice must be considered when distinguishing normal roles of TDP-43, particularly as they relate to development, from its pathogenic role in FTLD-TDP and other TDP-43 proteinopathies. Finally, our adult induction of hTDP-43 strategy provides a mouse model that develops critical pathological features that are directly relevant for human TDP-43 proteinopathies

    Clinical Manifestations Associated with Neurocysticercosis: A Systematic Review

    Get PDF
    Neurocysticercosis is an infection of the brain with the flatworm Taenia solium which is normally transmitted between humans and pigs. Sometimes, humans can infect other humans and the larva of the parasite can go the brain, causing the disease neurocysticercosis. There has never been a systematic review of what clinical signs are found among people with neurocysticercosis. We conducted a thorough review of the literature to answer this question. We reviewed 1569 and 21 were of a sufficient quality to be included in the final analysis. Among neurocysticercosis patients who are seeking care in neurology clinics, about 79% have seizures/epilepsy, 38% severe headaches, 16% focal deficits and 12% signs of increased intracranial pressure. Several other symptoms were also reported in less than 10% of patients. People with neurocysticercosis who seek care in neurology clinics show a whole range of manifestations. Clinicians should be encouraged to consider neurocysticercosis in their differential diagnosis when a patient presented with one of the symptoms described in this review. This would ultimately improve the estimates of the frequency of symptoms associated with neurocysticercosis

    Brain energy rescue:an emerging therapeutic concept for neurodegenerative disorders of ageing

    Get PDF
    The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner — a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG
    corecore