8 research outputs found

    Microclimate, an important part of ecology and biogeography

    Get PDF
    Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeography: We highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem management: Microclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate science: We showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management

    From broadleaves to conifers: The effect of tree composition and density on understory microclimate across latitudes

    Get PDF
    Forest canopies buffer the macroclimate and thus play an important role in mitigating climate-warming impacts on forest ecosystems. Despite the importance of the tree layer for understory microclimate buffering, our knowledge about the effects of forest structure, composition and their interactions with macroclimate is limited, especially in mixtures of conifers and broadleaves. Here we studied five mixed forest stands along a 1800 km latitudinal gradient covering a 7 degrees C span in mean annual temperature. In each of these forests we established 40 plots (200 in total), in which air and soil temperatures were measured continuously for at least one year. The plots were located across gradients of forest density and broadleaved proportions (i.e. from open to closed canopies, and from 100% conifer to 100% broadleaved tree dominance). Air minimum, mean and maximum temperature offsets (i.e. difference between macroclimate and microclimate) and soil mean temperature offsets were calculated for the coldest and warmest months. Forest structure, and especially forest density, was the key determinant of understory temperatures. However, the absolute and relative importance of the proportion of broadleaves and forest density differed largely between response variables. Forest density ranged from being independent of, to interacting with, tree species composition. The effect of these two variables was independent of the macroclimate along our latitudinal gradient. Temperature, precipitation, snow depth and wind outside forests affected understory temperature buffering. Finally, we found that the scale at which the overstory affects soil microclimate approximated 6-7 m, whereas for air microclimate this was at least 10 m. These findings have implications for biodiversity conservation and forest management in a changing climate, as they facilitate the projection of understory temperatures in scenarios where both forest structure and macroclimate are dynamic. This is especially relevant given the global importance of ongoing forest conversion from conifers to broadleaves, and vice versa

    The Asian giant resin bee Megachile sculpturalis Smith 1853 (Hymenoptera: Apoidea: Megachilidae), a new exotic species for the bee fauna of Mallorca (Balearic Islands, Spain)

    Get PDF
    Megachile sculpturalis Smith 1853 is found for the first time on the island of Mallorca (Balearic Islands, Spain). This is the first time that this exotic bee is reported from an island and is the southernmost record in Europe so far. Specimens were found in five distant locations throughout the island, which points out the current broad distribution of this species within the island and suggests that the introduction of M. sculpturalis may have happened earlier than 2020 and went unnoticed. M. sculpturalis females were found mainly feeding and collecting pollen from Sophora japonica L. 1767 (= Styphnolobium japonicum (L.) Schott 1830) and Parkinsonia aculeata L. 1753, two exotic ornamental trees. Potential entry means and impacts of this exotic bee on local biodiversity are discussed. Island ecosystems are highly vulnerable to the negative impacts produced by exotic species. Judging from the evidence of negative effects described in the literature so far, we recommend that the invasive potential and the impact of this species on native plants and pollinators within the insular context of the Balearic Islands be addressed in the future

    Base de datos de abejas ibéricas

    Get PDF
    Las abejas son un grupo extremadamente diverso con mås de 1000 especies descritas en la península ibérica. Ademås, son excelentes polinizadores y aportan numerosos servicios ecosistémicos fundamentales para la mayoría de ecosistemas terrestres. Debido a los diversos cambios ambientales inducidos por el ser humano, existen evidencias del declive de algunas de sus poblaciones para ciertas especies. Sin embargo, conocemos muy poco del estado de conservación de la mayoría de especies y de muchas de ellas ignoramos cuål es su distribución en la península ibérica. En este trabajo presentamos un esfuerzo colaborativo para crear una base de datos de ocurrencias de abejas que abarca la península ibérica e islas Baleares que permitirå resolver cuestiones como la distribución de las diferentes especies, preferencia de håbitat, fenología o tendencias históricas. En su versión actual, esta base de datos contiene un total de 87 684 registros de 923 especies recolectados entre 1830 y 2022, de los cuales un 87% presentan información georreferenciada. Para cada registro se incluye información relativa a la localidad de muestreo (89%), identificador y colector de la especie (64%), fecha de captura (54%) y planta donde se recolectó (20%). Creemos que esta base de datos es el punto de partida para conocer y conservar mejor la biodiversidad de abejas en la península ibérica e Islas Baleares

    The alien Black-and-yellow Mud Dauber, Sceliphron caementarium (Drury, 1773) (Hymenoptera, Sphecidae), continues its spread: new citizen-science records from Eastern Europe and the Balkans

    Get PDF
    The Nearctic Sceliphron caementarium (Drury, 1773) is widely distributed in the Western Palearctic and is spreading to new territories. Despite the large quantities of data on citizen-science platforms, these records have been mostly overlooked. In this publication, the first records of S. caementarium from six Eastern European and Balkan countries (Albania, Greece, Montenegro, Poland, Serbia, and Slovakia) are presented. Data derived from online citizen-science observations and museum specimens supplement our knowledge of this species’ range. The distribution of this species in Europe and possible ecological implications are discussed

    On the road: Anthropogenic factors drive the invasion risk of a wild solitary bee species

    Get PDF
    Complex biotic networks of invaders and their new environments pose immense challenges for researchers aiming to predict current and future occupancy of introduced species. This might be especially true for invasive bees, as they enter novel trophic interactions. Little attention has been paid to solitary, invasive wild bees, despite their increasing recognition as a potential global threat to biodiversity. Here, we present the first comprehensive species distribution modelling approach targeting the invasive bee Megachile sculpturalis, which is currently undergoing parallel range expansion in North America and Europe. While the species has largely colonised the most highly suitable areas of North America over the past decades, its invasion of Europe seems to be in its early stages. We showed that its current distribution is largely explained by anthropogenic factors, suggesting that its spread is facilitated by road and maritime traffic, largely beyond its intrinsic dispersal ability. Our results suggest that M. sculpturalis is likely to be negatively affected by future climate change in North America, while in Europe the potential suitable areas at-risk of invasion remain equally large. Based on our study, we emphasise the role of expert knowledge for evaluation of ecologically meaningful variables implemented and interpreted for species distribution modelling. We strongly recommend that the monitoring of this and other invasive pollinator species should be prioritised in areas identified as at-risk, alongside development of effective management strategies

    Microclimate, an inseparable part of ecology and biogeography

    No full text
    Abstract Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography, and where this field is heading next. We showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping, and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling, and solutions for computational challenges that have pushed the state-of-the-art of the field. We highlight the latest research on interactions between microclimate and organisms, including how microclimate influences individuals, and through them populations, communities, and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimate from the tropics to the poles. Microclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry, and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity. We identify major knowledge gaps that need to be filled for further advancing microclimate methods, investigations, and applications. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management. &nbsp; Biosketch The authors are participants of the Microclimate Ecology and Biogeography conference held in Antwerp, Belgium in 2022. Together they collaboratively wrote this perspective paper that brings together 97 experts and their views on the recent advancements and knowledge gaps in terrestrial microclimate. The paper was coordinated by Julia Kemppinen, Jonas Lembrechts, Koenraad Van Meerbeek, and Pieter De Frenne, and writing different sections was led by Jofre Carnicer, Nathalie Chardon, Paul Kardol, Jonathan Lenoir, Daijun Liu, Ilya Maclean, Jan Pergl, Patrick Saccone, Rebecca Senior, Ting Shen, Sandra SƂowiƄska, Vigdis Vandvik, and Jonathan von Oppen. For more details on authors statistics and how the work was organised, please see Supplementary information Figures S1-3.</p
    corecore