45 research outputs found

    Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa.

    Get PDF
    BACKGROUND: Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are highly effective tools for controlling malaria transmission in Africa because the most important vectors, from the Anopheles gambiae complex and the A. funestus group, usually prefer biting humans indoors at night. METHODS: Matched surveys of mosquito and human behaviour from six rural sites in Burkina Faso, Tanzania, Zambia, and Kenya, with ITN use ranging from 0.2% to 82.5%, were used to calculate the proportion of human exposure to An. gambiae sensu lato and An. funestus s.l. that occurs indoors (Ï€i), as an indicator of the upper limit of personal protection that indoor vector control measures can provide. This quantity was also estimated through use of a simplified binary analysis (Ï€(i)(B)) so that the proportions of mosquitoes caught indoors (Pi), and between the first and last hours at which most people are indoors (Pfl) could also be calculated as underlying indicators of feeding by mosquitoes indoors or at night, respectively. RESULTS: The vast majority of human exposure to Anopheles bites occurred indoors (Ï€(i)(B)= 0.79-1.00). Neither An. gambiae s.l. nor An. funestus s.l. strongly preferred feeding indoors (P(i) = 0.40-0.63 and 0.22-0.69, respectively), but they overwhelmingly preferred feeding at times when most humans were indoors (P(fl) = 0.78-1.00 and 0.86-1.00, respectively). CONCLUSIONS: These quantitative summaries of behavioural interactions between humans and mosquitoes constitute a remarkably consistent benchmark with which future observations of vector behaviour can be compared. Longitudinal monitoring of these quantities is vital to evaluate the effectiveness of ITNs and IRS and the need for complementary measures that target vectors outdoors

    Patterns of age-specific mortality in children in endemic areas of sub-Saharan Africa.

    Get PDF
    Understanding of the age- and season- dependence of malaria mortality is an important prerequisite for epidemiologic models of malaria immunity. However, most studies of malaria mortality have aggregated their results into broad age groups and across seasons, making it hard to predict the likely impact of interventions targeted at specific age groups of children. We present age-specific mortality rates for children aged < 15 years for the period of 2001-2005 in 7 demographic surveillance sites in areas of sub-Saharan Africa with stable endemic Plasmodium falciparum malaria. We use verbal autopsies (VAs) to estimate the proportion of deaths by age group due to malaria, and thus calculate malaria-specific mortality rates for each site, age-group, and month of the year. In all sites a substantial proportion of deaths (ranging from 20.1% in a Mozambican site to 46.2% in a site in Burkina Faso) were attributed to malaria. The overall age patterns of malaria mortality were similar in the different sites. Deaths in the youngest children (< 3 months old) were only rarely attributed to malaria, but in children over 1 year of age the proportion of deaths attributed to malaria was only weakly age-dependent. In most of the sites all-cause mortality rates peaked during the rainy season, but the strong seasonality in malaria transmission in these sites was not reflected in strong seasonality in the proportion of deaths attributed to malaria, except in the two sites in Burkina Faso. Improvement in the specificity of malaria verbal autopsies would make it easier to interpret the age and season patterns in such data

    Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa

    Get PDF
    Background Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are highly effective tools for controlling malaria transmission in Africa because the most important vectors, from the Anopheles gambiae complex and the A. funestus group, usually prefer biting humans indoors at night. Methods Matched surveys of mosquito and human behaviour from six rural sites in Burkina Faso, Tanzania, Zambia, and Kenya, with ITN use ranging from 0.2% to 82.5%, were used to calculate the proportion of human exposure to An. gambiae sensu lato and An. funestus s.l. that occurs indoors (Ï€i), as an indicator of the upper limit of personal protection that indoor vector control measures can provide. This quantity was also estimated through use of a simplified binary analysis (Ï€iB) so that the proportions of mosquitoes caught indoors (Pi), and between the first and last hours at which most people are indoors (Pfl) could also be calculated as underlying indicators of feeding by mosquitoes indoors or at night, respectively. Results The vast majority of human exposure to Anopheles bites occurred indoors (Ï€iB = 0.79-1.00). Neither An. gambiae s.l. nor An. funestus s.l. strongly preferred feeding indoors (Pi = 0.40-0.63 and 0.22-0.69, respectively), but they overwhelmingly preferred feeding at times when most humans were indoors (Pfl = 0.78-1.00 and 0.86-1.00, respectively). Conclusions These quantitative summaries of behavioural interactions between humans and mosquitoes constitute a remarkably consistent benchmark with which future observations of vector behaviour can be compared. Longitudinal monitoring of these quantities is vital to evaluate the effectiveness of ITNs and IRS and the need for complementary measures that target vectors outdoor

    Analysis of Preventive Interventions for Malaria: Exploring Partial and Complete Protection and Total and Primary Intervention Effects.

    Get PDF
    Event dependence, the phenomenon in which future risk depends on past disease history, is not commonly accounted for in the statistical models used by malaria researchers. However, recently developed methods for the analysis of repeated events allow this to be done, while also accounting for heterogeneity in risk and nonsusceptible subgroups. Accounting for event dependence allows separation of the primary effect of an intervention from its total effect, which is composed of its primary effect on risk of disease and its secondary effect mediated by event dependence. To illustrate these methods and show the insights they can provide, we have reanalyzed 2 trials of seasonal malaria chemoprevention (SMC) in Boussé, Burkina Faso, and Kati, Mali, in 2008-2009, as well as a trial of intermittent preventive treatment of malaria in infants in Navrongo, Ghana, in 2000-2004. SMC completely protects a large fraction of recipients, while intermittent preventive treatment in infants provides modest partial protection, consistent with the rationale of these 2 different chemopreventive approaches. SMC has a primary effect that is substantially greater than the total effect previously estimated by trials, with the lower total effect mediated by negative event dependence. These methods contribute to an understanding of the mechanisms of protection from these interventions and could improve understanding of other tools to control malaria, including vaccines

    Intermittent preventive treatment of malaria provides substantial protection against malaria in children already protected by an insecticide-treated bednet in Mali: a randomised, double-blind, placebo-controlled trial.

    Get PDF
    BACKGROUND: Previous studies have shown that in areas of seasonal malaria transmission, intermittent preventive treatment of malaria in children (IPTc), targeting the transmission season, reduces the incidence of clinical malaria. However, these studies were conducted in communities with low coverage with insecticide-treated nets (ITNs). Whether IPTc provides additional protection to children sleeping under an ITN has not been established. METHODS AND FINDINGS: To assess whether IPTc provides additional protection to children sleeping under an ITN, we conducted a randomised, double-blind, placebo-controlled trial of IPTc with sulphadoxine pyrimethamine (SP) plus amodiaquine (AQ) in three localities in Kati, Mali. After screening, eligible children aged 3-59 mo were given a long-lasting insecticide-treated net (LLIN) and randomised to receive three rounds of active drugs or placebos. Treatments were administered under observation at monthly intervals during the high malaria transmission season in August, September, and October 2008. Adverse events were monitored immediately after the administration of each course of IPTc and throughout the follow-up period. The primary endpoint was clinical episodes of malaria recorded through passive surveillance by study clinicians available at all times during the follow-up. Cross-sectional surveys were conducted in 150 randomly selected children weekly and in all children at the end of the malaria transmission season to assess usage of ITNs and the impact of IPTc on the prevalence of malaria, anaemia, and malnutrition. Cox regression was used to compare incidence rates between intervention and control arms. The effects of IPTc on the prevalence of malaria infection and anaemia were estimated using logistic regression. 3,065 children were screened and 3,017 (1,508 in the control and 1,509 in the intervention arm) were enrolled in the study. 1,485 children (98.5%) in the control arm and 1,481 (98.1%) in the intervention arm completed follow-up. During the intervention period, the proportion of children reported to have slept under an ITN was 99.7% in the control and 99.3% in intervention arm (p = 0.45). A total of 672 episodes of clinical malaria defined as fever or a history of fever and the presence of at least 5,000 asexual forms of Plasmodium falciparum per microlitre (incidence rate of 1.90; 95% confidence interval [CI] 1.76-2.05 episodes per person year) were observed in the control arm versus 126 (incidence rate of 0.34; 95% CI 0.29-0.41 episodes per person year) in the intervention arm, indicating a protective effect (PE) of 82% (95% CI 78%-85%) (p<0.001) on the primary endpoint. There were 15 episodes of severe malaria in children in the control arm compared to two in children in the intervention group giving a PE of 87% (95% CI 42%-99%) (p = 0.001). IPTc reduced the prevalence of malaria infection by 85% (95% CI 73%-92%) (p<0.001) during the intervention period and by 46% (95% CI 31%-68%) (p<0.001) at the end of the intervention period. The prevalence of moderate anaemia (haemoglobin [Hb] <8 g/dl) was reduced by 47% (95% CI 15%-67%) (p<0.007) at the end of intervention period. The frequencies of adverse events were similar between the two arms. There was no drug-related serious adverse event. CONCLUSIONS: IPTc given during the malaria transmission season provided substantial protection against clinical episodes of malaria, malaria infection, and anaemia in children using an LLIN. SP+AQ was safe and well tolerated. These findings indicate that IPTc could make a valuable contribution to malaria control in areas of seasonal malaria transmission alongside other interventions. TRIAL REGISTRATION: ClinicalTrials.gov NCT00738946. Please see later in the article for the Editors' Summary

    Intermittent preventive treatment of malaria provides substantial protection against malaria in children already protected by an insecticide-treated bednet in Burkina Faso: a randomised, double-blind, placebo-controlled trial.

    Get PDF
    BACKGROUND: Intermittent preventive treatment of malaria in children (IPTc) is a promising new approach to the control of malaria in areas of seasonal malaria transmission but it is not known if IPTc adds to the protection provided by an insecticide-treated net (ITN). METHODS AND FINDINGS: An individually randomised, double-blind, placebo-controlled trial of seasonal IPTc was conducted in Burkina Faso in children aged 3 to 59 months who were provided with a long-lasting insecticide-treated bednet (LLIN). Three rounds of treatment with sulphadoxine pyrimethamine plus amodiaquine or placebos were given at monthly intervals during the malaria transmission season. Passive surveillance for malaria episodes was established, a cross-sectional survey was conducted at the end of the malaria transmission season, and use of ITNs was monitored during the intervention period. Incidence rates of malaria were compared using a Cox regression model and generalized linear models were fitted to examine the effect of IPTc on the prevalence of malaria infection, anaemia, and on anthropometric indicators. 3,052 children were screened and 3,014 were enrolled in the trial; 1,505 in the control arm and 1,509 in the intervention arm. Similar proportions of children in the two treatment arms were reported to sleep under an LLIN during the intervention period (93%). The incidence of malaria, defined as fever or history of fever with parasitaemia ≥ 5,000/µl, was 2.88 (95% confidence interval [CI] 2.70-3.06) per child during the intervention period in the control arm versus 0.87 (95% CI 0.78-0.97) in the intervention arm, a protective efficacy (PE) of 70% (95% CI 66%-74%) (p<0.001). There was a 69% (95% CI 6%-90%) reduction in incidence of severe malaria (p = 0.04) and a 46% (95% CI 7%-69%) (p = 0.03) reduction in the incidence of all-cause hospital admissions. IPTc reduced the prevalence of malaria infection at the end of the malaria transmission season by 73% (95% CI 68%-77%) (p<0.001) and that of moderately severe anaemia by 56% (95% CI 36%-70%) (p<0.001). IPTc reduced the risks of wasting (risk ratio [RR] = 0.79; 95% CI 0.65-1.00) (p = 0.05) and of being underweight (RR = 0.84; 95% CI 0.72-0.99) (p = 0.03). Children who received IPTc were 2.8 (95% CI 2.3-3.5) (p<0.001) times more likely to vomit than children who received placebo but no drug-related serious adverse event was recorded. CONCLUSIONS: IPT of malaria provides substantial protection against malaria in children who sleep under an ITN. There is now strong evidence to support the integration of IPTc into malaria control strategies in areas of seasonal malaria transmission. TRIAL REGISTRATION: ClinicalTrials.govNCT00738946. Please see later in the article for the Editors' Summary

    Sustainable development of a GCP-compliant clinical trials platform in Africa: the Malaria Clinical Trials Alliance perspective

    Get PDF
    BACKGROUND: The Malaria Clinical Trials Alliance (MCTA), a programme of INDEPTH network of demographic surveillance centres, was launched in 2006 with two broad objectives: to facilitate the timely development of a network of centres in Africa with the capacity to conduct clinical trials of malaria vaccines and drugs under conditions of good clinical practice (GCP); and to support, strengthen and mentor the centres in the network to facilitate their progression towards self-sustaining clinical research centres. CASE DESCRIPTION: Sixteen research centres in 10 African malaria-endemic countries were selected that were already working with the Malaria Vaccine Initiative (MVI) or the Medicines for Malaria Venture (MMV). All centres were visited to assess their requirements for research capacity development through infrastructure strengthening and training. Support provided by MCTA included: laboratory and facility refurbishment; workshops on GCP, malaria diagnosis, strategic management and media training; and training to support staff to undertake accreditation examinations of the Association of Clinical Research Professionals (ACRP). Short attachments to other network centres were also supported to facilitate sharing practices within the Alliance. MCTA also played a key role in the creation of the African Media & Malaria Research Network (AMMREN), which aims to promote interaction between researchers and the media for appropriate publicity and media reporting of research and developments on malaria, including drug and vaccine trials. CONCLUSION: In three years, MCTA strengthened 13 centres to perform GCP-compliant drug and vaccine trials, including 11 centres that form the backbone of a large phase III malaria vaccine trial. MCTA activities have demonstrated that centres can be brought up to GCP compliance on this time scale, but the costs are substantial and there is a need for further support of other centres to meet the growing demand for clinical trial capacity. The MCTA experience also indicates that capacity development in clinical trials is best carried out in the context of preparation for specific trials. In this regard MCTA centres involved in the phase III malaria vaccine trial were, on average, more successful at consolidating the training and infrastructure support than those centres focussing only on drug trials
    corecore