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Event dependence, the phenomenon in which future risk depends on past disease history, is not commonly ac-

counted for in the statistical models used by malaria researchers. However, recently developed methods for the

analysis of repeated events allow this to be done, while also accounting for heterogeneity in risk and nonsusceptible

subgroups. Accounting for event dependence allows separation of the primary effect of an intervention from its total

effect, which is composed of its primary effect on risk of disease and its secondary effect mediated by event depen-

dence. To illustrate these methods and show the insights they can provide, we have reanalyzed 2 trials of seasonal

malaria chemoprevention (SMC) in Boussé, Burkina Faso, and Kati, Mali, in 2008–2009, as well as a trial of inter-

mittent preventive treatment of malaria in infants in Navrongo, Ghana, in 2000–2004. SMC completely protects a

large fraction of recipients, while intermittent preventive treatment in infants providesmodest partial protection, con-

sistent with the rationale of these 2 different chemopreventive approaches. SMC has a primary effect that is subs-

tantially greater than the total effect previously estimated by trials, with the lower total effect mediated by negative

event dependence. These methods contribute to an understanding of the mechanisms of protection from these

interventions and could improve understanding of other tools to control malaria, including vaccines.

cure models; event dependence; heterogeneity; malaria; repeated events

Abbreviations: CI, confidence interval; HR, hazard ratio; IPTi, intermittent preventive treatment in infants; SMC, seasonal malaria

chemoprevention.

The transmission of many infectious diseases, including
malaria, is highly heterogeneous (1–7). Under heterogeneous
exposure, the clinical burden of malaria, which is the focus of
this paper, may be concentrated disproportionately in certain
subgroups within the population (1). Some individuals ex-
perience repeated episodes while others, despite exposure,
experience only occasional episodes or escape disease alto-
gether. Heterogeneity in the risk of disease may be further
exaggerated by the presence of a subgroup within the popu-
lation that is either unexposed, immune to disease, or does
not report disease (i.e., is certain not to report illness) (3).
Where such a nonsusceptible fraction, or “cured fraction,”
is present, accounting for this is important; otherwise, the risk
for those truly susceptible may be underestimated (8). An

important question regarding preventive interventions, such
as chemoprophylaxis and vaccination, is whether they confer
complete protection, that is, increase the nonsusceptible frac-
tion (9). Consequently, presentation of vaccine trial results
only in terms of reduction in incidence rates has been criti-
cized (10, 11). Estimating both the overall reduction in inci-
dence and exploring evidence for complete protection may
give a better understanding of the effects of preventive inter-
ventions and their mode of action.
There is also a dynamic relationship between an individu-

al’s history of malarial disease and his/her future risk, known
as event dependence. This could be mediated by posttreat-
ment prophylaxis after treatment of malaria (12), loss of pro-
tection due to clearance of infection (13–15), development of
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immunity (16–18), or changes in behavior, including use of
protective measures. Accounting for event dependence is im-
portant; it allows separation of the primary effect of a protec-
tive intervention from its total effect, which is composed of
primary and secondary effects. In this context, the primary
effect refers to the ability of an intervention to directly reduce
risk of malaria. Secondary effects occur if prevention of a
particular episode influences the chances of subsequent epi-
sodes. If experiencing malaria reduces future risk (negative
event dependence), for example, by inducing partial immu-
nity, then when the total effect is measured, the primary ben-
efit of prevention of malaria will be diluted because those
who experience malaria will be at lower risk subsequently.
If experiencing malaria increases future malaria risk (posi-
tive event dependence), prevention of malaria has a double
benefit, by preventing both the index episode and the ele-
vated future risk. Reduction of the total number of episodes
(i.e., the total effect) is the usual endpoint of public health in-
terest (8, 19). However, separation of primary and secondary
effects is useful in understanding the mechanism by which a
particular intervention protects against malaria. This type of
secondary effect is distinct from those indirect effects medi-
ated by reducing transmission, as has been shown, for exam-
ple, with insecticide-treated nets.

Recently, Cheung et al. (19) showed that the Andersen-Gill
extension of the Cox regression model for repeated events es-
timates the total effect, and that frailty (heterogeneity) does not
bias estimation of the total effect by the Andersen-Gill model.

However, the Andersen-Gill model does not provide details
about what constitutes the total effect. Although simple meth-
ods can be used to estimate the reduction in number of events
or the increase in the proportion of the population free of dis-
ease due to an intervention, methods have been developed that
allow these to be estimated jointly (8, 20, 21). Recently, a com-
prehensive analytical framework has been developed by Xu
et al. (8, 21) to incorporate frailty, event dependence, and a
nonsusceptible fraction in the analysis of repeated disease
episodes.

To illustrate the application of these methods and to outline
the insights they provide regarding the mechanism of inter-
vention effects, we have reanalyzed data from 3 studies of
malaria chemoprevention.

METHODS

Data

Data on clinical malaria incidence from 3 previously pub-
lished studies (details shown in Tables 1 and 2) were used in
this analysis.

First, data were used from 2,989 children under 5 years
of age enrolled in a study of seasonal malaria chemopreven-
tion (SMC) in Boussé, Burkina Faso (22). Children received
sulfadoxine-pyrimethamine plus amodiaquine, or placebo,
monthly for 3 months during the peak malaria transmission
period. To focus on assessment of the intervention effect, we

Table 1. Details of the Studies in Boussé, Burkina Faso (2008–2009), Kati, Mali (2008–2009), and Navrongo, Ghana (2000–2004)

First Author, Year
(Reference No.)

Location
Study

Dates, years
No. in
Cohort

Person-Years
at Riska

Age at
Enrollment,
months

No. of Malaria
Episodesb

Drug Used for Case
Management

Konate, 2011 (22) Boussé, Burkina
Faso

2008–2009 2,989 2,423.70 3–59 1,496 Artemether-lumefantrine

Dicko, 2011 (23) Kati, Mali 2008–2009 2,967 2,333.50 3–59 1,125 Artemether-lumefantrine

Chandramohan,
2005 (24)

Navrongo,
Ghana

2000–2004 2,485 2,429.30 2–3 2,052 Chloroquine

a To avoid overestimation of the incidence rate in children who suffered multiple episodes of malaria, no deduction in person-time at risk was

made after a malaria episode.
b To avoid counting the same episode twice, reports of malarial attacks within 7 days of a prior episode were not counted.

Table 2. Incidence of Malaria in Boussé, Burkina Faso (2008–2009), Kati, Mali (2008–2009), and Navrongo, Ghana (2000–2004)

First Author, Year,
Reference

Location

All Participants Placebo Group Intervention Group No. of Malaria Episodes per Child

Incidence
Ratea,b

95% CI
Incidence
Ratea,b

95% CI
Incidence
Ratea,b

95% CI Mean Median Range Variance

Konate, 2011 (22) Boussé,
Burkina
Faso

617.2 586.7, 649.3 919.4 866.6, 975.4 324.2 293.9, 357.7 0.5 0 0–4 0.545

Dicko, 2011 (23) Kati, Mali 482.1 454.7, 511.1 738.8 691.1, 789.9 226.6 200.9, 255.6 0.38 0 0–4 0.462

Chandramohan,
2005 (24)

Navrongo,
Ghana

844.7 808.9, 882.1 986.1 931.9, 1,043.5 702.5 656.9, 751.3 0.83 1 0–7 0.98

Abbreviation: CI, confidence interval.
a Rate per 1,000 person-years.
b Analysis time was the time from enrollment until exit from follow-up, using time since enrollment as the timescale. Multiple episodes per child

were included.
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used data from the first 12 months of the study (i.e., the first
wet season and following the dry season). Malaria transmis-
sion was high in this setting: 41.5% of the placebo group car-
ried malarial parasites at the end of the rainy season (22).
Second, data were used from 2,967 children under 5 years

of age enrolled in a parallel study of SMC to the one de-
scribed above, conducted in Kati, Mali (23). Malaria trans-
mission was moderate-high: 13.2% of the placebo group
carried malaria infections at the end of the rainy season.
Third, data were used from 2,485 infants enrolled in a

cluster-randomized trial of intermittent preventive treatment
in infants (IPTi) in Navrongo, Ghana (24). Infants received
sulfadoxine-pyrimethamine or placebo at 3, 4, 9, and 12
months of age alongside routine immunizations. As for the
SMC studies, analysis was restricted to the year during which
the intervention was given, between enrollment at 2–3 months
and 14–15 months of age. Malaria transmission was high in
this setting: 31.5% of children in the placebo group carried in-
fections at 18 months of age.

Statistical analyses

Kaplan-Meier survival curves and cumulative hazard plots
were calculated for each study. A simple approach to estimate
the relative changes in the proportion with disease using the
Kaplan-Meier survival estimate is given in the Web Appen-
dix and Web Table 1, available at http://aje.oxfordjournals.
org/. The user-written program strmcure (25) for Stata
(StataCorp LP, College Station, Texas) can be used to imple-
ment a set of analytical models for analysis of repeated disease
episodes (21, 25). In brief, this set of models incorporates a

frailty term (a gamma-distributed random effect, as used in
negative binomial regression for count data) to describe het-
erogeneity in disease hazard. For models allowing a nonsus-
ceptible fraction, the proportion of the population not at risk
is estimated by a logistic component, and susceptible indi-
viduals are assumed to have a proper survival distribution
with an asymptote at 0 (i.e., all susceptible individuals would
eventually experience disease). Parametric and zero-tail com-
pletion methods are available. The former extrapolates the
tail of the hazard curve smoothly beyond the end of the
follow-up period; the latter classifies all children who have
not experienced malaria after the observed largest uncen-
sored time to first event, as being nonsusceptible. The model
parameters of interest are estimated by using the expectation-
maximization algorithm, with their respective variance being
estimated by using the Louis formula (26). The Breslow
method was used for tied failure times. All analyses were un-
dertaken in Stata release 13. Ninety-five percent confidence
intervals were presented throughout. Protective efficacy of
the interventions was calculated as (1 − hazard ratio) ex-
pressed as a percentage.
As discussed above, the Andersen-Gill model estimates the

total effect. The primary effect of the intervention can be esti-
mated by stratification of risk sets according to event order
(7, 19). In the stratified model, individuals yet to experience
an event are compared between intervention and control groups
(stratum 1), individuals with 1 prior event are compared be-
tween study groups (stratum 2), and so on. Consequently, the
comparison is free of the impact of event dependence and
therefore reveals the primary effect. Although theAndersen-Gill
model estimates the total effect accurately without incorporating

Table 3. Details of Regression Models and the Insights They Provide

Model
No.

Model Description

Estimate of
Intervention

Effect
Obtained

Partial and
Complete
Protection
Estimated
Separately

Models Exploring Event Dependence Only

1 Andersen-Gill model (Cox model with robust standard error) Total effect No

2 Frailty model Total effect No

3 Frailty model, adjusted for posttreatment prophylaxis as a
time-updated covariate

Total effect No

4 Frailty model, adjusted for event dependence (by stratification on
event order)

Primary effect No

Models Allowing for a Nonsusceptible Fraction

5 Frailty model, extended to allow nonsusceptible fraction Total effect Yes

6 Frailty model, extended to allow nonsusceptible fraction and adjusted
for posttreatment prophylaxis as a time-updated covariate

Total effect Yes

7 Frailty model, extended to allow nonsusceptible fraction and adjusted
for event dependence (by stratification on event order)

Primary effect Yes

Covariate-Adjusted Models, Allowing for Nonsusceptible Fraction (All Models Include
Time-Constant Covariates in Both Logistic and Hazard Components)

8 Frailty model, extended to allow nonsusceptible fraction Total effect Yes

9 Frailty model, extended to allow nonsusceptible fraction and adjusted
for posttreatment prophylaxis as a time-updated covariate

Total effect Yes

10 Frailty model, extended to allow nonsusceptible fraction and adjusted
for event dependence (by stratification on event order)

Primary effect Yes
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a frailty term, the comprehensive analytical framework re-
quires a frailty term so that no risk (nonsusceptible fraction)
can be differentiated from low risk (frailty) and so that stratifi-
cation models (to estimate the primary effect) work without
bias due to frailty (in a trial, randomization prevents confound-
ing by frailty only in the first event stratum). For completeness,
the illustration below includes both the Andersen-Gill model
and the frailty model to estimate the total effect.

As described above, one possible reason for event depen-
dence in malaria is the period of posttreatment prophylaxis
after experiencing a malaria episode. To explore this, we also
fitted alternative models with a time-updated covariate indicat-
ing when children were protected by posttreatment prophylaxis,
rather than stratifying on event number. We explored several
options, but there was no significant (or important, in terms of
magnitude) protection beyond 14 days, so a single indicator var-
iable, identifying time spans within 14 days of a previous epi-
sode, was included as a covariate in the hazard component of
models accounting for posttreatment prophylaxis.

Ten models were fitted to each data set (Table 3). The main
effect of interest was the intervention group to which children
were assigned at random. Comparison of models estimating
the total effect (model 1 or model 2) with the model allowing
for posttreatment prophylaxis (model 3) reveals the role
played by posttreatment prophylaxis in the total effect. Esti-
mates of the hazard ratio for posttreatment prophylaxis and
the frailty are given in Web Tables 2 and 3. Comparison of
models 1, 2, and 3with themodel estimating the primary effect
by stratification on event order (model 4) allows separation of
the primary effect of the intervention from its total effect.
Models 5, 6, and 7 allow for a nonsusceptible subgroup, with
the odds ratio reflecting the relative odds of being susceptible
in the intervention group (i.e., the extent of complete protec-
tion) and the hazard ratio reflecting the protection due to the
intervention among those who are susceptible (i.e., the extent
of partial protection). Comparison of models 6 and 7 with
model 5 allows investigation of the effect of accounting for
posttreatment prophylaxis and event dependence. Models 8,
9, and 10 are analogous to models 5, 6, and 7 but also adjust
for other covariates. In the covariate adjustment, time-constant
covariates (e.g., sex) were included in both the logistic com-
ponent (nonsusceptible fraction) and the hazard component
(disease incidence among the susceptible subjects) of the
models.

RESULTS

SMC studies in Boussé, Burkina Faso, and Kati, Mali

In Boussé, during the first year of the study, 1,496 malaria
episodes were observed, and incidencewas estimated at 919.4
episodes and 324.2 episodes per 1,000 person-years in the
placebo and SMC groups, respectively. In Kati, 1,125 malar-
ia episodes were documented, and incidence was estimated at
738.8 episodes and 226.6 episodes per 1,000 person-years in
the placebo and SMC groups, respectively.

In both sites, inspection of the survival curves shows a lev-
eling off in both groups (Figure 1A and 1B), compatible with
either the remainder of the population’s being nonsusceptible
or the cessation of malaria transmission. Because the cumula-

tive hazards also flatten (Figure 2A and 2B), some of the sub-
group without malaria may in fact be susceptible, and the
leveling off of the survival function may be due in part to the
seasonal drop in malaria incidence at the end of the rainy sea-
son (22, 23). Overall, about two-thirds of the children remained
free of malaria, the majority in the SMC group.

In Boussé, the estimated total effect (overall reduction in
incidence) from SMC was 64% (hazard ratio (HR) = 0.36,
95% confidence interval (CI): 0.32, 0.40) as shown in models
1 and 2 (Table 4). Models 1 and 2 give identical estimates,
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Figure 1. Kaplan-Meier survival plots for data from A) Boussé, Bur-
kina Faso, 2008–2009; B) Kati, Mali, 2008–2009; and C) Navrongo,
Ghana, 2000–2004.
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because the Andersen-Gill model estimates the total effect
without bias, even without incorporating a frailty term, as dis-
cussed above. The confidence intervals are also the same in
the context of a randomized trial because the frailty level is
independent of the study group, and therefore adjustment
for frailty does not induce colinearity that reduces precision.
Accounting for posttreatment prophylaxis slightly increased
the estimate of the total effect (HR = 0.33, 95% CI: 0.30,
0.38) in model 3 (Table 4). Stratification on event order
(and therefore estimating the primary effect of SMC) indi-
cates a much greater primary protective effect of SMC than

its total effect (HR = 0.15, 95% CI: 0.13, 0.18) (PE = 85%,
95% CI: 82, 87) as shown in model 4 (Table 4).
When allowing for a nonsusceptible fraction to investigate

partial and complete protection in Boussé, we found that chil-
dren given SMC had a much lower odds of being susceptible
(odds ratio = 0.24, 95% CI: 0.21, 0.26) (Table 4). In other
words, more children given SMC were completely protected.
The estimated susceptible fraction from model 5 was 56.3%
in the placebo group and 23.4% in children given SMC. Hav-
ing accounted for nonsusceptible children, we saw a more
modest total effect among the remaining susceptible children
(HR = 0.85, 95% CI: 0.76, 0.96) in model 5 (Table 4) (i.e.,
protective efficacy of 15%, compared with protective efficacy
of 64% when nonsusceptible children were ignored). Thus,
part of the protective effect of SMC appears to be provision
of complete protection to some children. Accounting for
posttreatment prophylaxis in addition to a nonsusceptible
subgroup slightly reduced the hazard ratio to 0.81 (95%
CI: 0.72, 0.91) in model 6 (Table 4). When accounting for
event dependence and a nonsusceptible fraction, we esti-
mated the primary effect among susceptible children to be
60% (HR = 0.40, 95% CI: 0.33, 0.49) in model 7 (Table 4).
Further adjustment for covariates (sex, village of residence,
age group, weight-for-age category) only slightly changed
these estimates in models 8, 9, and 10 (Table 4).
Similar results were observed in Kati, Mali. The estimated

total effect of SMC was a reduction in incidence of about
70% (HR = 0.31, 95% CI: 0.26, 0.35 and HR = 0.30, 95%
CI: 0.26, 0.35) as shown in models 1 and 2 (Table 4). Account-
ing for posttreatment prophylaxis slightly increased the esti-
mate of the total effect (HR = 0.28, 95% CI: 0.24, 0.33) in
model 3 (Table 4). Accounting for event dependence reduced
the hazard ratio substantially (HR = 0.05, 95% CI: 0.04, 0.07),
again indicating that the primary protective effect of SMC was
much larger than its total effect (95% vs. 70%). The estimated
susceptible fraction from model 5 was 44.1% in the placebo
group and 16.9% in children given SMC (odds ratio = 0.26,
95%CI: 0.23, 0.29). Having accounted for nonsusceptible chil-
dren, the estimated total effect of SMC was then a 22% reduc-
tion in incidence among those susceptible (HR = 0.78, 95%CI:
0.67, 0.89) in model 5 (Table 4) (compared with the protective
efficacy of 70% ignoring those nonsusceptible). Accounting
for posttreatment prophylaxis in addition to a nonsusceptible
subgroup slightly reduced the hazard ratio to 0.73 (95% CI:
0.64, 0.85) in model 6 (Table 4). When accounting for event
dependence and a nonsusceptible fraction, we estimated the
primary protective effect among the susceptible fraction to be
84% (HR = 0.16, 95% CI: 0.12, 0.20) in model 7 (Table 4).
Further adjustment for covariates (sex, village of residence,
age group,weight-for-age category) only slightly changed these
estimates in models 8, 9, and 10 (Table 4).

Navrongo IPTi study, Ghana

Therewere 2,052 malaria episodes in 2,429.3 person-years
of follow-up; incidence was 986.1 cases and 702.5 cases per
1,000 person-years in the placebo and IPTi groups, respec-
tively. The survival curves indicate that approximately half
the children experienced malaria by the end of the period ob-
served, with slightly more remaining free of malaria in the
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Figure 2. Nelson-Aalen cumulative hazard plots for data from
A) Boussé, Burkina Faso, 2008–2009; B) Kati, Mali, 2008–2009;
and C) Navrongo, Ghana, 2000–2004.
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IPTi group (Figure 1C). As the survival curves do not clearly
level off, estimation of the nonsusceptible fraction may not be
robust. We, therefore, undertook a sensitivity analysis using
the Weibull parametric tail completion method (discussed
below). The cumulative hazard plot deviated slightly from
a linear pattern over time, possibly reflecting the seasonal pat-
terns in malaria incidence in Navrongo (Figure 2C).

The estimated total effect of IPTi was modest: a 29% reduc-
tion in incidence over the first year of the study in theAndersen-
Gill and frailty models (HR = 0.71, 95% CI: 0.65, 0.78) in
models 1 and 2 (Table 5). Accounting for posttreatment pro-
phylaxis made only a very small difference to this estimate in
model 3 (Table 5). Adjusting for event dependence (and thus
estimating the primary effect) also made only minor changes
(HR = 0.73, 95% CI: 0.66, 0.80) in model 4 (Table 5).

In the main analysis that used the zero-tail completion
method to estimate a nonsusceptible fraction, the odds of being
susceptible to malaria were lower in the intervention group
(odds ratio = 0.69, 95% CI: 0.64, 0.74). Having allowed for a

nonsusceptible fraction, we found evidence that a modest
total effect among the susceptible fraction remains (HR =
0.84, 95% CI: 0.77, 0.92) in model 5 (Table 5). Accounting
for posttreatment prophylaxis did not alter these estimates
(model 6). Estimating the primary effect by adjusting for
event dependence did not make major changes (HR = 0.79,
95% CI: 0.73, 0.87) in model 7 (Table 5). Adjustment for
covariates (sex, place of residence, season of birth) made only
minor changes to these estimates (models 8, 9, and 10)
(Table 5).

Models with a nonsusceptible fraction, estimated using the
Weibull tail completion method (Table 6), gave very different
estimates for the hazard ratio and the odds ratio, as compared
with those based on the zero-tail completion method. Fig-
ure 2C shows that the cumulative hazard was increasing with
the follow-up time. Thus, the models with a nonsusceptible
fraction based on the zero-tail completion method, which as-
sumes 0 hazard after the observed largest uncensored time to
first event time, are not robust in this situation. The disagreement

Table 4. Output From Regression Models in SMC Studies in Boussé, Burkina Faso, and Kati, Mali, 2008–2009

Model
No.

Model Description
Effect

Estimated
PE, % 95% CI HR 95% CI ORa 95% CI

Boussé, Burkina Faso

1 SMC, Andersen-Gill model Total 64 60, 68 0.36 0.32, 0.40

2 SMC, frailty Total 64 60, 68 0.36 0.32, 0.40

3 SMC, frailty, PTP as TUC Total 67 62, 70 0.33 0.30, 0.38

4 SMC, frailty, adjusted for event dependenceb Primary 85 82, 87 0.15 0.13, 0.18

5 SMC, frailty, nonsusceptible fraction Total 15 4, 24 0.85 0.76, 0.96 0.24 0.21, 0.26

6 SMC, frailty, nonsusceptible fraction, PTP as TUC Total 19 9, 28 0.81 0.72, 0.91 0.24 0.21, 0.26

7 SMC, frailty, nonsusceptible fraction, adjusted for event
dependenceb

Primary 60 51, 67 0.40 0.33, 0.49 0.25 0.22, 0.27

8 SMC, frailty, nonsusceptible fraction, covariatesc Total 14 3, 24 0.86 0.76, 0.97 0.22 0.20, 0.25

9 SMC, frailty, nonsusceptible fraction, PTP as TUC,
covariatesc

Total 19 8, 28 0.81 0.72, 0.92 0.22 0.20, 0.25

10 SMC, frailty, nonsusceptible fraction, covariatesc,
adjusted for event dependenceb

Primary 57 49, 64 0.43 0.36, 0.51 0.23 0.21, 0.26

Kati, Mali

1 SMC, Andersen-Gill model Total 69 65, 74 0.31 0.26, 0.35

2 SMC, frailty Total 70 65, 74 0.30 0.26, 0.35

3 SMC, frailty, PTP as TUC Total 72 67, 76 0.28 0.24, 0.33

4 SMC, frailty, adjusted for event dependenceb Primary 95 93, 96 0.05 0.04, 0.07

5 SMC, frailty, nonsusceptible fraction Total 22 11, 33 0.78 0.67, 0.89 0.26 0.23, 0.29

6 SMC, frailty, nonsusceptible fraction, PTP as TUC Total 27 15, 36 0.73 0.64, 0.85 0.26 0.23, 0.30

7 SMC, frailty, nonsusceptible fraction, adjusted for event
dependenceb

Primary 84 80, 88 0.16 0.12, 0.20 0.26 0.23, 0.30

8 SMC, frailty, nonsusceptible fraction, covariatesc Total 24 12, 34 0.76 0.66, 0.88 0.22 0.20, 0.25

9 SMC, frailty, nonsusceptible fraction, PTP as TUC,
covariatesc

Total 29 18, 38 0.71 0.62, 0.82 0.23 0.20, 0.26

10 SMC, frailty, nonsusceptible fraction, covariatesc,
adjusted for event dependenceb

Primary 85 80, 89 0.15 0.11, 0.20 0.23 0.20, 0.26

Abbreviations: CI, confidence interval; HR, hazard ratio; OR, odds ratio; PE, protective efficacy; PTP, posttreatment prophylaxis; SMC, seasonal
malaria chemoprevention; TUC, time-updated covariate.

a The odds ratio is the relative change in the odds of being susceptible due to the intervention.
b Event dependence occurs when the primary effect is estimated by stratifying on event order.
c Covariates consist of sex, village of residence, age group, and weight-for-age category.
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between these analyses highlights the fact that this particular
data set does not allow reliable estimation of a nonsusceptible
fraction.

DISCUSSION

We have applied regression methods for analysis of recur-
rent events that consider individual-level heterogeneity in
risk (frailty), nonsusceptible subgroups within the popula-
tion, and event dependence to data from 3 studies of malaria
chemoprevention.
SMC consists of monthly treatment courses of antimalarial

drugs given “during the malaria season to prevent malarial

illness with the objective of maintaining therapeutic antima-
larial drug concentrations in the blood throughout the period
of greatest malarial risk” (27, p. 1). For children in whom this
is achieved, complete protection is biologically plausible. In
both study sites, there was a large reduction, relative to the
placebo group, in the estimated susceptible fraction in the
SMC group (56% vs. 23% in Burkina Faso; 44% vs. 17%
in Mali). Having accounted for this, we found that the total
protective effect of SMC among children not completely pro-
tected was then more modest—around 15% in Burkina Faso
and 22% in Mali. Comparing this with the estimates of the
total protective effect obtained if a nonsusceptible fraction
is not accounted for (64% and 70%) suggests that a large

Table 6. Sensitivity Analysis of the Tail Completion Method for Data From the IPTi Study in Navrongo, Ghana, 2000–2004

Model

No.
Model Description

Effect

Estimated

Zero Tail Completion Weibull Tail Completion

HR 95% CI ORa 95% CI HR 95% CI ORa 95% CI

5 IPTi, frailty, nonsusceptible fraction Total 0.84 0.77, 0.92 0.69 0.64, 0.74 0.65 0.58, 0.74 10.2 9.41, 11.0

7 IPTi, frailty, nonsusceptible fraction,
adjusted for event dependenceb

Primary 0.79 0.73, 0.87 0.69 0.64, 0.74 0.66 0.60, 0.73 3.32 3.32c

8 IPTi, frailty, nonsusceptible fraction,
covariatesd

Total 0.84 0.77, 0.92 0.68 0.64, 0.74 0.71 0.64, 0.78 1.29 1.28, 1.29

10 IPTi, frailty, nonsusceptible fraction,
covariatesd, adjusted for event
dependenceb

Primary 0.78 0.71, 0.85 0.68 0.63, 0.73 0.72 0.66, 0.79e 1.23 1.22, 1.24e

Abbreviations: CI, confidence interval; HR, hazard ratio; IPTi, intermittent preventive treatment in infants; OR, odds ratio.
a The odds ratio is the relative change in the odds of being susceptible due to the intervention.
b Event dependence occurs when the primary effect is estimated by stratifying on event order.
c Standard error not estimated; CI is not presented.
d Covariates consist of sex, place of residence, and season of birth.
e Model did not fully converge.

Table 5. Output From Regression Models in IPTi Study in Navrongo, Ghana, 2000–2004

Model
No.

Model Description
Effect

Estimated
PE, % 95% CI HR 95% CI ORa 95% CI

1 IPTi, Andersen-Gill model Total 29 22, 35 0.71 0.65, 0.78

2 IPTi, frailty Total 29 22, 35 0.71 0.65, 0.78

3 IPTi, frailty, PTP as TUC Total 30 22, 36 0.70 0.64, 0.78

4 IPTi, frailty, adjusted for event dependenceb Primary 27 20, 34 0.73 0.66, 0.80

5 IPTi, frailty, nonsusceptible fraction Total 16 8, 23 0.84 0.77, 0.92 0.69 0.64, 0.74

6 IPTi, frailty, nonsusceptible fraction, PTP as TUC Total 16 8, 23 0.84 0.77, 0.92 0.69 0.64, 0.74

7 IPTi, frailty, nonsusceptible fraction, adjusted for event
dependenceb

Primary 21 13, 27 0.79 0.73, 0.87 0.69 0.64, 0.74

8 IPTi, frailty, nonsusceptible fraction, covariatesc Total 16 8, 23 0.84 0.77, 0.92 0.68 0.64, 0.74

9 IPTi, frailty, nonsusceptible fraction, PTP as TUC,
covariatesc

Total 17 9, 24 0.83 0.76, 0.91 0.68 0.64, 0.74

10 IPTi, frailty, nonsusceptible fraction, covariatesc,
adjusted for event dependenceb

Primary 22 15, 29 0.78 0.71, 0.85 0.68 0.63, 0.73

Abbreviations: CI, confidence interval; HR, hazard ratio; IPTi, intermittent preventive treatment in infants; OR, odds ratio; PE, protective efficacy;

PTP, posttreatment prophylaxis; TUC, time-updated covariate.
a The odds ratio is the relative change in the odds of being susceptible due to the intervention.
b Event dependence occurs when the primary effect is estimated by stratifying on event order.
c Covariates consist of sex, place of residence, and season of birth.
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part of the benefit of SMC occurs by providing complete pro-
tection to many children.

There were also substantial differences between the total
and primary effects of SMC. The rate ratio was further from
1 when models were stratified on event order, in addition to
allowing for a nonsusceptible fraction: The estimated primary
protective effect, among those individuals whowere not com-
pletely protected, was 60% in Burkina Faso and 84% inMali,
which is substantially higher than the total protective ef-
fect (allowing for a nonsusceptible subgroup) of 15% and 22%.
This suggests a strong degree of negative event dependence;
that is, experiencing malaria reduces future risk. Although
SMC dramatically reduces disease episodes among people
with the same prior disease experience (primary effect), the
total benefit is slightly diluted by the fact that those children
who do experience malaria will be at reduced risk subse-
quently (secondary effect). This secondary effect could be
mediated by faster acquisition of immunity in children who
experience malaria, or equivalently, slower acquisition of im-
munity in childrenwho are protected, leading to increased future
risk (the “rebound effect”). In support of this, children who did
not receive SMC had a slightly lower incidence than did SMC
recipients in the subsequent year, although this was outweighed
about 10-fold by the protection during the intervention period
(28, 29).

It is important to examine whether survival curves and/or
cumulative hazard curves are leveling off before one interprets
estimates of the nonsusceptible (completely protected) fraction.
For SMC, flattening off of the survival curve with increasing
time may reflect the exhaustion of the susceptible population,
leaving a completely protected subgroup, but could also be
caused by disappearance of mosquitoes at the onset of the dry
season. If the former, disease cases would continue to occur in
the susceptible population, and this will be apparent from the
cumulative hazard plot. If exposure has stopped because of the
seasonality of malaria transmission, it may not be possible to
interpret the estimated nonsusceptible fraction as completely
protected.

The rationale of IPTi is to allow immunity to malaria to de-
velop naturally while limiting the clinical consequences, by
providing alternating intervals of protection and exposure dur-
ing infancy (30, 31). Without considering a nonsusceptible
fraction, we found that analysis of the Navrongo trial shows
that IPTi reduced the hazard of malaria by about 30%. The pri-
mary and total benefits of IPTi appeared to be similar in this
context, which may be because this intervention was delivered
only in thefirst yearof life,when acquisitionof immunity is only
just beginning to develop, and therefore prevention of malaria
does not have major effects on subsequent risk. Long-term
follow-up of children given continuous chemoprophylaxis or
placebo in the first year of life did not find large differences in
subsequent malaria risk (32), and the differences would be
likely to be smaller for IPTi andwould be smaller in the shorter
period observed in this study.

In the IPTi trial, results were unstable because the survival
curves did not level off. Although theWeibull tail completion is
more robust than the zero-tail completion in these circumstances,
it is still an extrapolation of the past hazard pattern to the
future. On the basis of Figure 2C, it appears that the follow-up
time has been too short to know whether the extrapolation is

reasonable. Cheung et al. (19) previously studied the Nav-
rongo data with a longer follow-up time, up to 23 months,
and the zero-tail completion and the parametric tail comple-
tion by Weibull distribution (for models without covariates)
agreed well. In the present study, the intention was to focus
on the intervention period (when IPTi drugs were adminis-
tered and therefore when assessment of complete protection
would be biologically meaningful) but, because the interven-
tion period was short, doing so reduces follow-up time, mak-
ing it difficult to estimate reliably the nonsusceptible fraction.

A limitation of this study is that we have not considered
estimation of time-varying intervention effects and duration
of protection, which may be of particular interest in vaccine
studies. Nonproportionality of hazards may exist because of
faster acquisition of immunity in the control group and also
because of waning of the intervention effect. However, even
if hazards are not proportional, the estimated hazard ratio
from those models without a cured fraction is practically use-
ful, as it represents the average of the covariate effect over the
study period (33). For models with a cured fraction, the im-
pact of the violation of the proportional hazards assumption
on the parameter estimation warrants further investigation but
is beyond the scope of the current paper.

There are no established statistical methods for evaluating
the goodness-of-fit of recurrent events survival models, and
this is a topic of further research. Whether the aim of analysis
should be to fit the data well or to estimate the parameter of
interest depends on the research question (34). In this study,
we focused on obtaining parameter estimates for intervention
effects, assuming different biologically plausible mecha-
nisms rather than formally identifying which model fits the
data better. However, if the goal were to develop a prognostic
model, then model fit is of primary importance. We did not
attempt to estimate formally the degree of event dependence
or the secondary effect, because this requires strong paramet-
ric assumptions about the event dependence in the hazard
function (35); instead, we made an informal comparison be-
tween the primary and total effects.

These methods allow simultaneous investigation of partial
and complete protections and primary and total intervention
effects. As discussed above and in theWeb Appendix, simple
methods are available to describe efficacy in terms of the
number of events or in terms of the proportion completely free
of disease. For estimation of the total effect, the Andersen-
Gill model is not inferior to the frailty model in randomized
trials and is superior in nonrandomized studies. Unless it is
desired to quantify the degree of heterogeneity in the popula-
tion, the frailty model is mainly a building block of the more
complex models described above. When the aims of analysis
are simple, simple models such as the Andersen-Gill model
can be used more widely than they are at present.

Application of the more sophisticated approaches described
in this paper to data from studies of other interventions has the
potential to improve understanding of the mechanism of pro-
tective interventions against malaria and other infectious dis-
eases. Particularly relevant in the near future will be analysis
of studies of malaria vaccines, for which the ability to disen-
tangle the different possible benefits of vaccination (partial
and complete protection, primary and total effect) would be
a major asset.
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