5,490 research outputs found

    The effects of docks on seagrasses, with particular emphasis on the threatened seagrass, Halophila johnsonii

    Get PDF
    In March of 2005, the National Oceanic and Atmospheric Administration's Special Projects Office released "Population Trends along the Coastal United States: 1980-2008." This report includes population changes and trends between 1980 and 2003 and projected changes in coastal populations by 2008. Given the findings, pressure on coastal resources around the country will continue to rise, particularly in Florida. ... One of our most valuable coastal resources is seagrass, but human desire and need to live on the coast means that our habitat overlaps with suitable seagrass habitat. Seagrasses can be found in coastal areas around the world but are limited to relatively shallow, relatively clear water because of their reliance on light for photosynthesis. Seagrasses provide food for both small and large marine organisms, larval and adult stage. They provide shelter and habitat to a variety of commercially important fish and invertebrates. They baffle the water column and inhibit the resuspension of sediments. They prevent erosion and fix and recycle nutrients. The physical and ecological benefits of seagrasses make them very important to human welfare, but their light-limited coastal distribution makes them highly susceptible to anthropogenic influences

    Assessment of a quantum phase gate operation based on nonlinear optics

    Full text link
    We analyze in detail the proposal for a two-qubit gate for travelling single-photon qubits recently presented by C. Ottaviani \emph{et al}. [Phys. Rev. A \textbf{73}, 010301(R) (2006)]. The scheme is based on an ensemble of five-level atoms coupled to two quantum and two classical light fields. The two quantum fields undergo cross-phase modulation induced by electromagnetically induced transparency. The performance of this two-qubit quantum phase gate for travelling single-photon qubits is thoroughly examined in the steady-state and transient regimes, by means of a full quantum treatment of the system dynamics. In the steady-state regime, we find a general trade-off between the size of the conditional phase shift and the fidelity of the gate operation. However, this trade-off can be bypassed in the transient regime, where a satisfactory gate operation is found to be possible, significantly reducing the gate operation time.Comment: 12 pages, 15 figure

    Statistical mechanics of the Cluster-Ising model

    Full text link
    We study a Hamiltonian system describing a three-spin-1/2 cluster-like interaction competing with an Ising-like anti-ferromagnetic interaction. We compute free energy, spin correlation functions and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Neverthless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.Comment: To be published in Physical Review

    Animal models of tic disorders: A translational perspective

    Get PDF
    Tics are repetitive, sudden movements and/or vocalizations, typically enacted as maladaptive responses to intrusive premonitory urges. The most severe tic disorder, Tourette syndrome (TS), is a childhood-onset condition featuring multiple motor and at least one phonic tic for a duration longer than 1 year. The pharmacological treatment of TS is mainly based on antipsychotic agents; while these drugs are often effective in reducing tic severity and frequency, their therapeutic compliance is limited by serious motor and cognitive side effects. The identification of novel therapeutic targets and development of better treatments for tic disorders is conditional on the development of animal models with high translational validity. In addition, these experimental tools can prove extremely useful to test hypotheses on the etiology and neurobiological bases of TS and related conditions. In recent years, the translational value of these animal models has been enhanced, thanks to a significant re-organization of our conceptual framework of neuropsychiatric disorders, with a greater focus on endophenotypes and quantitative indices, rather than qualitative descriptors. Given the complex and multifactorial nature of TS and other tic disorders, the selection of animal models that can appropriately capture specific symptomatic aspects of these conditions can pose significant theoretical and methodological challenges. In this article, we will review the state of the art on the available animal models of tic disorders, based on genetic mutations, environmental interventions as well as pharmacological manipulations. Furthermore, we will outline emerging lines of translational research showing how some of these experimental preparations have led to significant progress in the identification of novel therapeutic targets for tic disorders

    Slab stiffness control of trench motion: Insights from numerical models

    Get PDF
    Subduction zones are not static features, but trenches retreat (roll back) or advance. Here, we investigate the dominant dynamic controls on trench migration by means of two- and three-dimensional numerical modeling of subduction. This investigation has been carried out by systematically varying the geometrical and rheological model parameters. Our viscoplastic models illustrate that advancing style subduction is promoted by a thick plate, a large viscosity ratio between plate and mantle, and a small density contrast between plate and mantle or an intermediate width (w ∼ 1300 km). Advancing slabs dissipate ∼45% to ∼50% of the energy in the system. Thin plates with relatively low viscosity or relatively high density, or wide slabs (w ∼ 2300 km), on the other hand, promote subduction in the retreating style (i.e., slab roll-back). The energy dissipated by a retreating slab is ∼35% to ∼40% of the total dissipated energy. Most of the energy dissipation occurs in the mantle to accommodate the slab motion, whereas the lithosphere dissipates the remaining part to bend and “unbend.” With a simple scaling law we illustrate that this complex combination of model parameters influencing trench migration can be reduced to a single one: plate stiffness. Stiffer slabs cause the trench to advance, whereas more flexible slabs lead to trench retreat. The reason for this is that all slabs will bend into the subduction zone because of their low plastic strength near the surface, but stiff slabs have more difficulty “unbending” at depth, when arriving at the 660-km discontinuity. Those bent slabs tend to cause the trench to advance. In a similar way, variation of the viscoplasticity parameters in the plate may change the style of subduction: a low value of friction coefficient weakens the plate and results in a retreating style, while higher values strengthen the plate and promote the advancing subduction style. Given the fact that also on Earth the oldest (and therefore probably stiffest) plates have the fastest advancing trenches, we hypothesize that the ability of slabs to unbend after subduction forms the dominant control on trench migration

    Observation of bosonic coalescence of photon pairs

    Full text link
    Quantum theory predicts that two indistinguishable photons incident on a beam-splitter interferometer stick together as they exit the device (the pair emerges randomly from one port or the other). We use a special photon-number-resolving energy detector for a direct loophole-free observation of this quantum-interference phenomenon. Simultaneous measurements from two such detectors, one at each beam-splitter output port, confirm the absence of cross-coincidences.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Preterm birth after loop electrosurgical excision procedure (LEEP). how cone features and microbiota could influence the pregnancy outcome

    Get PDF
    OBJECTIVE: In the last years, the mean age of women who underwent cervical treatment for high-grade cervical intraepithelial neoplasia (CIN 2-3) is similar to the age of women having their first pregnancy. The aim of this study was to evaluate the risk of preterm birth in subsequent pregnancies after loop electrosurgical excision procedure (LEEP). PATIENTS AND METHODS: From January 2013 to January 2016 the study identified a total of 1435 women, nulliparous, who underwent LEEP for CIN 2-3, and who wished to have their first pregnancy. Before surgery, the lengths of the cervix were calculated by transvaginal sonography. After the treatment, the dimension of the removed tissue was evaluated. During the pregnancy, all women carried out periodic transvaginal sonography and vaginal-cervical swabs. RESULTS: The average age of patients was 31.96±5.24 years; the interval between the surgical procedure and pregnancy was 12.04±4.67 months; the gestational age at births was 37.53±2.91 weeks. The first vaginal and cervical swab performed during pregnancy was negative in 81.8% of patients. The most prevalent infections were related to C. Albicans, G. Vaginalis, and Group B Streptococcus (GBS). The rate of preterm delivery was significantly higher in women with a minor cervical length. CONCLUSIONS: The length and the volume of cervical tissue excised have been shown to be directly related to the risk for preterm birth. Furthermore, vaginal infections and their persistence during pregnancy in women with a history of LEEP may be associated with an increased risk for preterm birth, compared with women with no history of LEEP

    Violation of Bell's Inequality with Photons from Independent Sources

    Get PDF
    We report a violation of Bell's inequality using one photon from a parametric down-conversion source and a second photon from an attenuated laser beam. The two photons were entangled at a beam splitter using the post-selection technique of Shih and Alley [Phys. Rev. Lett. 61, 2921 (1988)]. A quantum interference pattern with a visibility of 91% was obtained using the photons from these independent sources, as compared with a visibility of 99.4% using two photons from a central parametric down-conversion source.Comment: 4 pages, 5 figures; minor change
    corecore