46 research outputs found

    Magnetic fan structures in Ba0.5Sr1.5Zn2Fe12O22 hexaferrite revealed by resonant soft x-ray diffraction

    Get PDF
    The hexaferrites are known to exhibit a wide range of magnetic structures, some of which are connected to important technological applications and display magnetoelectric properties. We present data on the low magnetic field structures stabilized in a Y-type hexaferrite as observed by resonant soft x-ray diffraction. The helical spin block arrangement that is present in zero applied magnetic field becomes fanlike as a field is applied in plane. The propagation vectors associated with each fan structure are studied as a function of magnetic field, and a new magnetic phase is reported. Mean field calculations indicate this phase should stabilize close to the boundary of the previously reported phases

    Prediction of Patient Outcomes in Locally Advanced Cervical Carcinoma Following Chemoradiotherapy—Comparative Effectiveness of Magnetic Resonance Imaging and 2-Deoxy-2-[18F]fluoro-D-glucose Imaging

    Get PDF
    Purpose: To evaluate the utility and comparative effectiveness of three five-point qualitative scoring systems for assessing response on PET-CT and MRI imaging individually and in combination, following curative-intent chemoradiotherapy (CRT) in locally advanced cervical cancer (LACC). Their performance in the prediction of subsequent patient outcomes was also assessed; Methods: Ninety-seven patients with histologically confirmed LACC treated with CRT using standard institutional protocols at a single centre who underwent PET-CT and MRI at staging and post treatment were identified retrospectively from an institutional database. The post-CRT imaging studies were independently reviewed, and response assessed using five-point scoring tools for T2WI, DWI, and FDG PET-CT. Patient characteristics, staging, treatment, and follow-up details including progression-free survival (PFS) and overall survival (OS) outcomes were collected. To compare diagnostic performance metrics, a two-proportion z-test was employed. A Kaplan–Meier analysis (Mantel–Cox log-rank) was performed. Results: The T2WI (p < 0.00001, p < 0.00001) and DWI response scores (p < 0.00001, p = 0.0002) had higher specificity and accuracy than the PET-CT. The T2WI score had the highest positive predictive value (PPV), while the negative predictive value (NPV) was consistent across modalities. The combined MR scores maintained high NPV, PPV, specificity, and sensitivity, and the PET/MR consensus scores showed superior diagnostic accuracy and specificity compared to the PET-CT score alone (p = 0.02926, p = 0.0083). The Kaplan–Meier analysis revealed significant differences in the PFS based on the T2WI (p < 0.001), DWI (p < 0.001), combined MR (p = 0.003), and PET-CT/MR consensus scores (p < 0.001) and in the OS for the T2WI (p < 0.001), DWI (p < 0.001), and combined MR scores (p = 0.031) between responders and non-responders. Conclusion: Post-CRT response assessment using qualitative MR scoring and/or consensus PET-CT and MRI scoring was a better predictor of outcome compared to PET-CT assessment alone. This requires validation in a larger prospective study but offers the potential to help stratify patient follow-up in the future

    Imaging current-induced switching of antiferromagnetic domains in CuMnAs

    Get PDF
    The magnetic order in antiferromagnetic materials is hard to control with external magnetic fields. Using X-ray Magnetic Linear Dichroism microscopy, we show that staggered effective fields generated by electrical current can induce modification of the antiferromagnetic domain structure in microdevices fabricated from a tetragonal CuMnAs thin film. A clear correlation between the average domain orientation and the anisotropy of the electrical resistance is demonstrated, with both showing reproducible switching in response to orthogonally applied current pulses. However, the behavior is inhomogeneous at the submicron level, highlighting the complex nature of the switching process in multi-domain antiferromagnetic films

    Valence band photoemission from the GaN(0001) surface

    Full text link
    A detailed investigation by one-step photoemission calculations of the GaN(0001)-(1x1) surface in comparison with recent experiments is presented in order to clarify its structural properties and electronic structure. The discussion of normal and off-normal spectra reveals through the identified surface states clear fingerprints for the applicability of a surface model proposed by Smith et al. Especially the predicted metallic bonds are confirmed. In the context of direct transitions the calculated spectra allow to determine the valence band width and to argue in favor of one of two theoretical bulk band structures. Furthermore a commonly used experimental method to fix the valence band maximum is critically tested.Comment: 8 pages, 11 eps files, submitted to PR

    Induced magnetic moment of Eu3+ ions in GaN

    Get PDF
    Magnetic semiconductors with coupled magnetic and electronic properties are of high technological and fundamental importance. Rare-earth elements can be used to introduce magnetic moments associated with the uncompensated spin of 4f-electrons into the semiconductor hosts. The luminescence produced by rare-earth doped semiconductors also attracts considerable interest due to the possibility of electrical excitation of characteristic sharp emission lines from intra 4f-shell transitions. Recently, electroluminescence of Eu-doped GaN in current-injection mode was demonstrated in p-n junction diode structures grown by organometallic vapour phase epitaxy. Unlike most other trivalent rare-earth ions, Eu3+ ions possess no magnetic moment in the ground state. Here we report the detection of an induced magnetic moment of Eu3+ ions in GaN which is associated with the 7F2 final state of 5D0→7F2 optical transitions emitting at 622 nm. The prospect of controlling magnetic moments electrically or optically will lead to the development of novel magneto-optic devices

    Reconfigurable reservoir computing in a magnetic metamaterial

    Get PDF
    In-materia reservoir computing (RC) leverages the intrinsic physical responses of functional materials to perform complex computational tasks. Magnetic metamaterials are exciting candidates for RC due to their huge state space, nonlinear emergent dynamics, and non-volatile memory. However, to be suitable for a broad range of tasks, the material system is required to exhibit a broad range of properties, and isolating these behaviours experimentally can often prove difficult. By using an electrically accessible device consisting of an array of interconnected magnetic nanorings- a system shown to exhibit complex emergent dynamics- here we show how reconfiguring the reservoir architecture allows exploitation of different aspects the system’s dynamical behaviours. This is evidenced through state-of-the-art performance in diverse benchmark tasks with very different computational requirements, highlighting the additional computational configurability that can be obtained by altering the input/output architecture around the material system

    Nanoscale self-organization and metastable non-thermal metallicity in Mott insulators

    Get PDF
    Mott transitions in real materials are first order and almost always associated with lattice distortions, both features promoting the emergence of nanotextured phases. This nanoscale self-organization creates spatially inhomogeneous regions, which can host and protect transient non-thermal electronic and lattice states triggered by light excitation. Here, we combine time-resolved X-ray microscopy with a Landau-Ginzburg functional approach for calculating the strain and electronic real-space configurations. We investigate V2O3, the archetypal Mott insulator in which nanoscale self-organization already exists in the low-temperature monoclinic phase and strongly affects the transition towards the high-temperature corundum metallic phase. Our joint experimental-theoretical approach uncovers a remarkable out-of-equilibrium phenomenon: the photo-induced stabilisation of the long sought monoclinic metal phase, which is absent at equilibrium and in homogeneous materials, but emerges as a metastable state solely when light excitation is combined with the underlying nanotexture of the monoclinic lattice.status: publishe

    Phase coexistence and transitions between antiferromagnetic and ferromagnetic states in a synthetic antiferromagnet

    Get PDF
    In synthetic antiferromagnets (SAFs), antiferromagnetic (AFM) order and synthesis using conventional sputtering techniques is combined to produce systems that are advantageous for spintronics applications. Here we present the preparation and study of SAF multilayers possessing both perpendicular magnetic anisotropy and the Dzyaloshinskii-Moriya interaction. The multilayers have an antiferromagnetically aligned ground state but can be forced into a full ferromagnetic (FM) alignment by applying an out-of-plane field ∼100mT. We study the spin textures in these multilayers in their ground state as well as around the transition point between the AFM and FM states at fields ∼40 mT by imaging the spin textures using complementary methods: photoemission electron, magnetic force, and Lorentz transmission electron microscopies. The transformation into a FM state by field proceeds by a nucleation and growth process, where skyrmionic nuclei form and then broaden into regions containing a ferromagnetically aligned labyrinth pattern that eventually occupies the whole film. Remarkably, this process occurs without any significant change in the net magnetic moment of the multilayer. The mix of antiferromagnetically and ferromagnetically aligned regions on the micron scale in the middle of this transition is reminiscent of a first-order phase transition that exhibits phase coexistence. These results are important for guiding the design of spintronic devices whose operation is based on spin textures in perpendicularly magnetized SAFs

    Quantifying the computational capability of a nanomagnetic reservoir computing platform with emergent magnetization dynamics

    Get PDF
    Devices based on arrays of interconnected magnetic nano-rings with emergent magnetization dynamics have recently been proposed for use in reservoir computing applications, but for them to be computationally useful it must be possible to optimise their dynamical responses. Here, we use a phenomenological model to demonstrate that such reservoirs can be optimised for classification tasks by tuning hyperparameters that control the scaling and input rate of data into the system using rotating magnetic fields. We use task-independent metrics to assess the rings' computational capabilities at each set of these hyperparameters and show how these metrics correlate directly to performance in spoken and written digit recognition tasks. We then show that these metrics, and performance in tasks, can be further improved by expanding the reservoir's output to include multiple, concurrent measures of the ring arrays magnetic states
    corecore