54 research outputs found

    A Proof of Work: Securing Majority-Attack in Blockchain Using Machine Learning and Algorithmic Game Theory

    Get PDF
    Blockchain's vast applications in different industries have drawn several researchers to pursue extensive research in securing blockchain technologies. In recent times we could see several institutions coming together to create consortium based blockchain networks such as Hyperledger. Although for applications of blockchain such as Bitcoin, Litcoin, etc. the majority-attack might not be a great threat but for consortium based blockchain networks where we could see several institutions such as public, private, government, etc. are collaborating, the majority-attack might just prove to be a prevalent threat if collusion among these institutions takes place. This paper proposes a methodology where we can use intelligent software agents to monitor the activity of stakeholders in the blockchain networks to detect anomaly such as collusion, using supervised machine learning algorithm and algorithmic game theory and stop the majority attack from taking place

    Novel DVFS Methodologies For Power-Efficient Mobile MPSoC

    Get PDF
    Low power mobile computing systems such as smartphones and wearables have become an integral part of our daily lives and are used in various ways to enhance our daily lives. Majority of modern mobile computing systems are powered by multi-processor System-on-a-Chip (MPSoC), where multiple processing elements are utilized on a single chip. Given the fact that these devices are battery operated most of the times, thus, have limited power supply and the key challenges include catering for performance while reducing the power consumption. Moreover, the reliability in terms of lifespan of these devices are also affected by the peak thermal behaviour on the device, which retrospectively also make such devices vulnerable to temperature side-channel attack. This thesis is concerned with performing Dynamic Voltage and Frequency Scaling (DVFS) on different processing elements such as CPU & GPU, and memory unit such as RAM to address the aforementioned challenges. Firstly, we design a Computer Vision based machine learning technique to classify applications automatically into different categories of workload such that DVFS could be performed on the CPU to reduce the power consumption of the device while executing the application. Secondly, we develop a reinforcement learning based agent to perform DVFS on CPU and GPU while considering the user's interaction with such devices to optimize power consumption and thermal behaviour. Next, we develop a heuristic based automated agent to perform DVFS on CPU, GPU and RAM to optimize the same while executing an application. Finally, we explored the affect of DVFS on CPUs leading to vulnerabilities against temperature side-channel attack and hence, we also designed a methodology to secure against such attack while improving the reliability in terms of lifespan of such devices

    SD-MARC: A New Multi-Processor Architecture

    Get PDF
    Abstract -In modern day, HPC (High Performance Computin

    DeadPool: Performance Deadline Based Frequency Pooling and Thermal Management Agent in DVFS Enabled MPSoCs

    Get PDF
    High operating temperature and frequent thermal cycles in a multi-processor system-on-chip, which is now popularly utilized in mobile/Edge devices, harm the overall lifespan and reliability of such devices. In this paper, we propose an intelligent software agent that works alongside other resource mapping and partitioning mechanism in order to monitor and reduce the operating temperature of the system by regulating the operating frequency of the CPU cores while catering for performance constraint at the same time. Our proposed approach?, DeadPool thermal management agent, is able to reduce the overall operating temperature of the system by 24.21% and reduce thermal cycle by 67.42% at the most when compared to the state-of-the-art methods

    TEEM: Online Thermal- and Energy-Efficiency Management on CPU-GPU MPSoCs

    Get PDF
    Heterogeneous Multiprocessor System-on-Chip (MPSoC) are progressively becoming predominant in most modern mobile devices. These devices are required to perform processing of applications within thermal, energy and performance constraints. However, most stock power and thermal management mechanisms either neglect some of these constraints or rely on frequency scaling to achieve energy-efficiency and temperature reduction on the device. Although this inefficient technique can reduce temporal thermal gradient, but at the same time hurts the performance of the executing task. In this paper, we propose a thermal and energy management mechanism which achieves reduction in thermal gradient as well as energy-efficiency through resource mapping and thread-partitioning of applications with online optimization in heterogeneous MPSoCs. The efficacy of the proposed approach is experimentally appraised using different applications from Polybench benchmark suite on Odroid-XU4 developmental platform. Results show 28% performance improvement, 28.32% energy saving and reduced thermal variance of over 76% when compared to the existing approaches. Additionally, the method is able to free more than 90% in memory storage on the MPSoC, which would have been previously utilized to store several task-to-thread mapping configurations
    • …
    corecore