
TEEM: Online Thermal- and Energy-Efficiency
Management on CPU-GPU MPSoCs

Samuel Isuwa∗†, Somdip Dey†1, Amit Kumar Singh†2, and Klaus McDonald-Maier†3
†School of Computer Science and Electronics Engineering, University of Essex, UK

Email: {1somdip.dey, 2a.k.singh, 3kdm }@essex.ac.uk
∗Computer Engineering Department, University of Maiduguri, Borno State, Nigeria

Email: si17378@essex.ac.uk

Abstract—Heterogeneous Multiprocessor System-on-Chip
(MPSoC) are progressively becoming predominant in most
modern mobile devices. These devices are required to
perform processing of applications within thermal, energy
and performance constraints. However, most stock power
and thermal management mechanisms either neglect some
of these constraints or rely on frequency scaling to achieve
energy-efficiency and temperature reduction on the device.
Although this inefficient technique can reduce temporal thermal
gradient, but at the same time hurts the performance of the
executing task. In this paper, we propose a thermal and energy
management mechanism which achieves reduction in thermal
gradient as well as energy-efficiency through resource mapping
and thread-partitioning of applications with online optimization
in heterogeneous MPSoCs. The efficacy of the proposed approach
is experimentally appraised using different applications from
Polybench benchmark suite on Odroid-XU4 developmental
platform. Results show 28% performance improvement, 28.32%
energy saving and reduced thermal variance of over 76%
when compared to the existing approaches. Additionally, the
method is able to free more than 90% in memory storage on
the MPSoC, which would have been previously utilized to store
several task-to-thread mapping configurations.

I. INTRODUCTION

Multiprocessor (many processing units or core on a single
chip) System-on-Chip (MPSoC) are progressively becoming
predominant in most modern computing devices ranging from
mobile phones to sophisticated system. The emergence of
these multiprocessor technologies is due to the successes
recorded in technological advancement which made it possible
for more than one processing element (core) to be integrated
on the same chip [1]. Earlier multi-core systems are made
up of a collection of identical cores – Homogeneous multi-
core systems [2]. Modern systems now use different types of
cores within a single chip (heterogeneous multi-core system)
due to the evolving workloads and varied applications that
we have today. These Heterogeneous Multi-core systems have
proven to provide more benefits in terms of area, core(s) to
application(s) matching for improved performance, power and
workload coverage [2], [3]. For instance, Samsung Exynos
5422, commercially utilized in recent smartphones like Galaxy
S5 [4], comprises a multi-core ARM Cortex-A15 (big) and
Cortex-A7 (LITTLE) CPU clusters alongside ARM Mali-T628
MP6 GPU [4].

Despite the improvement towards efficient and versatile
computation in mobile devices, thermal and power challenge
remain the most significant threat to this evolution [5]. In-
creasingly smaller chip size and functional complexity often
increase the power density which in turn leads to a higher
temperature for the different core. Thermal management as

This work is supported by the UK Engineering and Physical Sciences
Research Council EPSRC [EP/R02572X/1 and EP/P017487/1].

0 48Time (seconds)80

85

90

95

100

 T
em

p
er

at
u

re
 (

0
C

)

1000

1500

2000

 F
re

q
u

en
cy

 (
M

H
z)

 (a) Temperature and Frequency with existing approach

Temperature(0C)
Frequency(MHz)

0 48Time (seconds)80

85

90

95

100

 T
em

p
er

at
u

re
 (

0
C

)

1000

1500

2000

 F
re

q
u

en
cy

 (
M

H
z)

 (b) Temperature and Frequency with proposed TEEM

Temperature(0C)
Frequency(MHz)

Energy=413J

Energy=530J

Fig. 1. (a) Existing vs (b) Proposed Approach

oppose to energy saving approach ensures that the temperature
of the chip does not go beyond the thermal limit. In most
of these approaches, throttling of various devices that have
reached temperature limit is performed to tackle the thermal
issues [5]. However, this approach tends to be reactive as often
in time the thermal limits for these devices are reached or
exceeded before the throttling occurs. This inefficient tech-
nique often leads to sizeable temporal temperature variation,
which not only affects the performance but also impairs on
the reliability of the device [1], [6]–[8].

Even though thermal and energy-aware mapping involving
CPU and GPU has been studied by [9], energy and perfor-
mance are often traded-off for improved temperature behavior
and vice-versa. Also, the approach only considers design-time
(offline) optimization. Therefore, there is a need for a smart
approach to efficiently handle the trade-off between power,
performance and temperature.

This paper proposes an online thermal- and energy-
efficiency management (TEEM) mechanism for executing ap-
plications in CPU-GPU mobile MPSoC. The work focuses
on the multithreaded applications because of the need to
concurrently exploit the CPU and the GPU cores of the
heterogeneous SoC during execution.

A. Motivational case study
An experimental case study is used to demonstrate the ad-

vantages of the proposed TEEM approach. Fig. 1(a) illustrates
execution by a typical Linux ondemand thermal management
technique in Exynos 5422 while running COVARIANCE
application from the Polybench benchmark suite on 2L+3B
mapping (two LITTLE and three Big cores of the CPU cluster)
and GPU cluster at partition 1024 (workloads shared evenly
across the CPU-GPU cores). The figure clearly shows the
temperature of core-6 (the core with the highest temperature
within the big CPU cluster) and the throttling of the big
CPU cluster, i.e. the stepping down of the frequency level
of the Cortex A15-Cores from 2000 MHz to 900 MHz to
reduce the dissipation of power and consequently reduction in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/327079523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

temperature. This is done whenever the temperature exceeds
or reaches the thermal limit, in this case, 95oC. This technique
often infringes on the performance of the Mobile SoC as
the device might end up working at lower frequency mode
(900 MHz as against 2000 MHz) thus negatively affecting
the need for incorporating the powerful core initially. Also,
the variable temperature spread over time as a result of the
throttling also impact on the reliability of the device. It can
also be seen in Fig. 1(a) that the Linux ondemand has an
execution time of 48seconds, average temperature of 93.7oC
and energy consumption of 530J (Joules) with a peak operating
temperature of 96oC.

In contrast, rather than allowing the SoC to reach its thermal
limit and thereby throttling to the much lower frequency (900
MHz), the proposed approach maintains the SoC at a much
lower operating temperature by setting a lower threshold (85oC
in this case). This was achieved by progressively stepping
down the frequency of the A15 cluster, whenever the tempera-
ture reaches the threshold. This frequency scaling was possible
because the cluster supports multiple frequency levels which
ranges from 200 MHz to 2000 MHz at a step of 100 MHz
[4]. Our systematic approach as shown in Fig. 1(b) resulted in
lower execution time of 39.6seconds, an average temperature
of 85.8oC and reduced energy consumption of 413J with
a peak temperature of 90oC. Therefore, efficient thermal
management was achieved without trading-off performance or
energy efficiency, thus, translating into more reliable system
with more extended battery life and improved performance.

In implementing the proposed approach, this paper makes
the following novel contributions:

1. Detailed evaluation of the CPU and GPU characteris-
tics while running different applications at varying frequency
setting on Samsung Exynos 5422 MPSoC with consideration
on the temperature, energy consumption and performance
constraint.

2. A model is developed from the obtained characteristics
using linear regression in R to determine the mapping and
fraction of application workload on the CPU-GPU cores while
satisfying the requirement.

3. An online thermal- and energy-efficient mechanism that
meets performance requirement.

4. Implementation of the mechanism on real-life mobile
MPSoC present in the Odroid-XU4 board and evaluation using
different applications.

II. RELATED WORK AND PROBLEM FORMULATION
Energy saving mechanisms within performance constraint

on heterogeneous MPSoC have been considered by authors in
[10]–[12], [29]. Even though the results obtained show energy
saving, the approaches can only be applied on Single-ISA
heterogeneous MPSoC thus cannot be used for application
running on CPU-GPU cores with different ISA. Furthermore,
authors in [13] studied performance and energy saving in
scheduling priority-constrained real-time applications on mul-
tiprocessor systems applying DVFS. However, the approach
did not consider different applications and the heterogeneity
of the microprocessors in minimizing the energy consumption.

Conversely, authors in [3], [14]–[16] examined energy-
efficient mapping and partitioning of applications on heteroge-
neous platforms using CPU-GPU SoCs. [16] considers parti-
tioning of application exploring different domains, different
ISA and operating system on an extremely heterogeneous
platform. Authors in [14] achieve energy efficiency by focus-
ing on remapping and migration of task in multi-application

scenario. Authors in [3] and [15] employed OpenCL to ex-
plore the simultaneous CPU and GPU exploitation for an
application. [3] proposed static partitioning of applications
through optimum power-performance trade-off of the CPU
and GPU clusters by careful exploitation of their performance
and functional heterogeneity. Similarly [15] considers run-
time mapping and thread partitioning of application within
performance constraints of the applications. Although the
works above achieved energy saving, temperature behaviour
which may not only lead to degraded system performance but
also reliability issues, was not considered.

Proactive thermal management in MPSoC that uses predic-
tors was proposed by [17], [18]. The authors in [17] predict
temperature and modify the task allocation. Reduction of
temperature variance and thermal hot spots were achieved with
little performance cost. Similarly, authors in [19] proposed a
runtime thermal management that helps in reducing hot spot,
average thermal cycle and spatial gradient. The approaches
achieved significant improvement compared to other reactive
methods. However, only homogeneous MPSoC was consid-
ered.

Design-time thermal optimization in single core systems
using DVFS was pioneered by [19]. Equally, the work was
further extended by [20], [21] employing real-time applica-
tions on heterogeneous microprocessor systems. Authors in
[20] considers only independent real-time workloads. Authors
of [21] on the other hand, consider energy efficient approach
in different real-time applications with priority constrained.
The approach is especially suitable for heterogeneous multi-
scale systems. However, OpenCL which supports concurrent
exploitation of CPU and GPU cores was not employed.

Run-time temperature prediction and dynamic thermal and
power management approach for single-ISA heterogeneous
MPSoC was presented by [7]. Also, run-time thermal and
energy efficient mapping using OpenCL on heterogeneous
MPSoCs was considered by [9]. The approach in [9] does
not apply any online procedure to optimize the temperature,
energy and or the performance of the MPSoC when the
behavior of the cores change.

Summarily, majority of the works in this field consider
energy optimization without thermal consideration [3], [10]–
[16] which not only affects the reliability and lifespan of the
system but also negatively affects the performance as well. The
few works on heterogeneous MPSoC [9] do not employ online
optimization process when the behavior of the cores change
which often leads to a substantial difference in temperature
variance that affects the reliability of the SoC.

In contrast, this paper focuses on thermal management
process which increases reduction in thermal gradient as well
as energy-efficiency through resource mapping and thread-
partitioning of application workloads with online optimization
in heterogeneous MPSoCs.

A. Problem Formulation
Given: User requirement, TREQ (time required) and AT (av-

erage temperature), for a performance constrained application
execution on a heterogeneous MPSoC using CPU-GPU cores
that support dynamic voltage and frequency scaling.

Find: Model that determines the mapping and fraction of
application workload on the CPU-GPU cores of the Mobile
SoC using linear regression in R. Also, an online thermal-
and energy-efficient mechanism.

App1

Generate a limited set of design

points using CPU-GPU cores

T11 .. T1K

Appm

TM1 .. TMK

Evaluate the design points for

performance, temperature and

energy consumption

Profile Data

(model for each application,

ETGPU)

CPU-GPU

SoC

Generate model to predict design

points using earlier evaluations

Find the

design point

Execute

Is

TMP>=Threshold?

Select design point with

reduced frequency level

Yes

No

Profiled

data

CPU-GPU

SoCApplication

Is

TMP<Threshold?

Select design point with

maximum frequency

Yes

No

 Online optimization process

Fig. 2. Proposed online Thermal and Energy-Efficiency Management (TEEM)

Subject to: Meeting the performance- and thermal-
constraints of each application within the SoC available re-
sources.

III. PROPOSED APPROACH

Fig. 2 shows an outline of the runtime (online) thermal-
and energy-efficiency management (TEEM) approach to ex-
ecute applications in CPU-GPU MPSoC. The approach has
offline and online procedures. Details of the procedures are as
follows.

A. Offline Process
1) Generation of design points using CPU and GPU cores:

For each application App1 to Appm, a set of mapping and
partition of work-items between CPU and GPU is determined
as design points. Equation (1) is used to determine the number
of mappings for the considered platform on the CPU clusters
(MCPU) [15]. Similarly, only one possible mapping is obtain-
able on the GPU cluster.

MCPU = Nb +NL + (Nb ×NL) (1)
Where Nb and NL represent the number of cores on the

big and LITTLE CPU clusters, respectively. However, Exynos
5422 supports cluster-wise voltage-frequency scaling, hence
using the different frequency setting for the big (19), LITTLE
(13) and GPU (7) clusters, the maximum design points (MDP)
for the appraised MPSoC was obtained using (2) [15].
MDP = {(Nb × Fb) + (NL × FL) + (Nb × Fb ×NL × FL)}

×{1× Fg}
(2)

Where Fb, FL, and Fg represent the frequencies of the big,
LITTLE and the GPU cores respectively.

For each of the mapping generated, nine different partitions
of work-item are also generated. The fraction of the application
workload is varied from 0 to 1 on the CPU cores with partition
0 representing all the workloads on the GPU, and partition 1

denotes all the workloads are executed on the CPU cores.
Other intermediate values across different grains to represent
the various fraction of workloads on the CPU and GPU include
1/8, 2/8 (1/4), 3/8, 4/8 (1/2), 5/8 (10/16), 6/8 (3/4), and 7/8.
Therefore, the design points considered include the different
mapping as well as the partition of work-items on the CPU and
GPU cores. However, not all the 28,560 mappings (obtained
from (1)) × 9 partitions, which equates to 257,040 design
points were considered. Specifically, 10,368 design points that
cover a diverse mapping represented as used big and LITTLE
cores and various partitions were used.

2) Evaluation of design points: For the design points
(D) considered, the metrics, i.e. temperature profile, energy
consumption, frequency and execution time were obtained.

The execution time (ET) is governed by the cluster (CPU
or GPU) taking more time as shown using (3) or (4).
ET = max {WGCPU × ETCPU, (1−WGCPU)× ETGPU}

(3)
ET = max {WGCPU × ETCPU,WGGPU × ETGPU} (4)

Where WGCPU and WGGPU are the fractions of workload
on the CPU and GPU cores respectively, ETCPU and ETGPU
represent the approximated execution times when workload is
executed on only CPU and only GPU respectively.

The temperatures for the design points are determined with
the help of the temperature sensors on the big CPU and GPU
Clusters. At each point in time, the highest temperature value
was taken for the two clusters (big and GPU) and both the
peak and average of the peak-temperatures over time were
evaluated.

The frequency of the different clusters was also captured
at finer grains to evaluate the effect of throttling on each of
the clusters. It was observed that only the frequency of the big
cluster A15 core was affected by the Linux ondemand thermal
management whereas the LITTLE and GPU clusters are not
affected. For each of the different frequency/voltage settings,
the changes in each of the metrics were captured, compared
and evaluated.

The power readings were taken using Odroid smart power
2. The value read include voltage, current, power (Watt) and
kWh. The power (Watt) is multiplied by the execution time of
the application to determine the actual energy consumption in
Joules of the MPSoC.

3) Model to predict the mapping and partition: Linear
regression in R was used to determine the model. Fig. 3 shows
the preliminary analysis of the data using scattered matrix
plot to visualize the relationship between the multi-predictor
variables.

For the multiple linear regression model in this work, (5) is
the consideration:
M = β0+(β1 ×AT)+(β2 × ET)+(β3 × PT)+(β4 × EC)

(5)
Where M represents the mapping for the big and LITTLE

cores, AT and PT are the average and peak temperatures re-
spectively, ET represents the execution time and EC represents
the energy consumption. M is the response variable while AT,
PT, ET and EC are the multiple-predictor variables generated
using different application when varying the mapping from
1L+1B to 4L+4B. The intercept β0 and the slopes: β1, β2, β3
and β4 of each predictor is estimated by the model with all
the predictor variables as shown in Table I.

From the results of Fig. 3 and Table I, the following
explanations can be given:

25 5535 4525 5535 45 250 450350

82 86 9082 86 90 84 9688 9284 9688 92 0.0 3.01.0 2.00.0 3.01.0 2.0

84

96
84

96

82

90
82

90

0.
0

3.

0
0.

0

3.
0

25
55

25
55

25
0

45
0

25
0

45
0

Fig. 3. Matrix scatterplot of respond and predictor variables

• For any time specified by the user, there will be an
average reduction in the number of used big.LITTLE cores
by -0.33165. Similarly, for any given average temperature, and
peak temperature there will also be a reduction in the number
of cores by -0.22377 and -0.20229 respectively. Only energy
consumption will lead to increase in the mapping by 0.02017.

• It can also be noticed that energy consumption, average
and peak temperature values have insignificant p-values (Prob-
ability). From Fig. 3, it is clear the pattern mapping takes
when regressed on average temperature and peak temperature;
they are closely associated with each other, likewise energy
consumption and execution time. Therefore, when combined
in a model, they masked (become insignificant after adjusting
to) each other. This often results in collinear problem whenever
two or more predictors are strongly correlated. To avoid this,
peak temperature and energy consumption are dropped, and
the model is rerun.

After running the model with average temperature and
execution time as the predictor variables, a very strong level
of significance is observed. However, there is little or no
improvement in adjusted R-squared value and the residual
error probably due to outlier points. Hence, the response
variable was transformed using logarithm to base ten to fit
the model better.

Table II shows the output of the modified model using
logarithm. The model reflects an improved F-statistic (ratio
of mean regression to the mean error, the higher the value,
the better the result) from 40.66 to 76.71 on 2 and 13 degrees
of freedom, improved multiple and adjusted R-squared values
of 0.92 and 0.91 respectively.

The transform residual plot shows a relatively good fit with
the data randomly scattered as shown in Fig. 4.

Thus, (5) now becomes:
log(M) = β0 + (β1 ×AT) + (β2 × ET) (6)

In summary, the model for predicting the mapping to be
used given user’s requirement, i.e. average temperature and
time has been generated. This solves the issue raised in
[15] regarding the huge number of mappings that has to be
generated and stored. However, for each application, the model
has to be adjusted in order to fit properly as each application
behaves differently on the CPU and GPU clusters.

4) Determination of the Fraction of Workloads on the CPU
and GPU: To determine the fraction of application workloads
to be executed on the CPU and the rest on the GPU or vice
versa, (3) and (4) were modified to obtain (7) and (8) for
partition of work-items and fraction of workload respectively.

ET = WGCPU × ETCPU (7)
ET = (1−WGCPU)× ETGPU (8)

Where ET is the time taken for the application to complete
its execution. Since ETGPU is independent of the mapping

TABLE I
FITTING THE MODEL WITH ALL THE PREDICTOR VARIABLES

Residuals:

min 1Q median 3Q max
-0.9163 -0.2417 0.1544 0.3471 0.5374

Coefficients:
Estimate std. Error t-value Pr(>—t—)

(Intercept) 44.91228 11.24681 3.993 0.00178**
AT -0.22377 0.13789 -1.623 0.13060
ET -0.33165 0.12015 -2.760 0.01727*
PT -0.20229 0.21002 -0.963 0.35446
EC 0.02017 0.01398 1.443 0.17467

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.5 ’.’ 0.1 ’ ’ 1
Residual Standard error: 0.4802 on 12 degrees of freedom
Multiple R-squared: 0.8749, Adjusted R-squared: 0.8332
F-statistics: 20.98 on 4 and 12 DF, p-value: 2.396e-05

TABLE II
THE TRANSFORMED MODEL

Residuals:

min 1Q median 3Q max
-0.34646 -0.08481 0.01754 0.11249 0.22634

Coefficients:
Estimate std. Error t-value Pr(>—t—)

(Intercept) 10.099046 3.124188 3.233 0.00654**
AT -0.079174 0.031680 -2.499 0.02663*
ET -0.065991 0.008635 -7.642 3.68e-06***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.5 ’.’ 0.1 ’ ’ 1
Residual standard error: 0.1614 on 13 degrees of freedom
Multiple R-squared: 0.9219, Adjusted R-squared: 0.9019
F-statistics: 76.71 on 2 and 13 DF, p-value: 6.348e-08

Residuals vs Fitted

0.0 0.5 1.0

-0.
4

Fitted Values

Re
sid

ua
ls

-0.
3

-0.
2

-0.
1

0.0
0.1

0.2

Fig. 4. Residual plot for the transformed model

used, (8) can be transformed to determine the fraction of
workloads on the CPU by changing ET to TREQ (time required
for the application to be executed) which is specified by the
user. Equation (8) then becomes:

WGCPU = 1− (TREQ/ETGPU) (9)
Equation (9) is used to determine the fraction of workload

on the CPU provided TREQ is less than ETGPU. This is logical
because there is no advantage in exploring the heterogeneity
of the cores if better performance can be achieved with single-
ISA heterogeneous SoC, i.e. either GPU or CPU.

B. Online Optimization Process
At runtime, the design point D is determined given the

required timing (TREQ) and average temperature (AT) as the
constraints using the developed model. The fraction of applica-
tion workload (WGCPU) on the CPU is also determined using
(9) and the ETGPU stored from the offline process. Thereafter,
the application is scheduled to execute at maximum frequency
for all the clusters (big.LITTLE and GPU).

During execution, the temperature of the cores (big and
GPU) are monitored continuously using the onboard temper-
ature sensors to ensure the threshold set is not exceeded.
When the threshold temperature is reached, the frequency
level of the A15 core is reduced by a delta (δ) value (200
MHz in this case) and the design point D is selected as

shown in Fig. 2. If the temperature is still equal to or greater
than the threshold, further reduction is done by δ, but not
below 1400 MHz. 1400 MHz was used due to the observation
made while evaluating the effects of various frequencies on
performance and temperature. The constant selection of D
enables a progressive reduction in the frequency level to be
achieved. However, if at any point the temperature is observed
to be below the threshold, D with maximum frequency is
selected to avoid infringing the performance.

IV. EXPERIMENTAL SETUP AND EVALUATION
A. Experimental setup

1) Hardware Infrastructure: The proposed approach was
implemented on Odroid-XU4 development platform [4] that
employs Exynos 5422 MPSoC from Samsung. The Exynos
5422 integrates CPU clusters built on ARM’s big.LITTLE [23]
multi-core architecture and Mali-T628 GPU cluster core on a
single chip. The LITTLE CPU cluster comprises of quad-core
Cortex-A7 capable of operating at a cluster-wise frequency
of 200 MHz to 1400 MHz at discrete intervals of 100 MHz.
Similarly, the big cluster consists of powerful ARM Cortex-
A15 quad-cores which can be clocked from 200 MHz to 2000
MHz at the same discrete interval of 100 MHz [3], [4], [24].
The GPU cluster, on the other hand, is made up of Mali-T628
MP6 GPU, which consist of 6 shader cores with a clock speed
of up to 600 MHz.

Odroid smart power 2 capable of powering single-board
devices with power requirement ranging from 4 to 5.3 volts
and 5 amp in 100 mV step [25] was used to monitor the
power consumed by the SoC. The Wi-Fi enabled access board
captures the voltage (volt), current (Ampere), power (watt) and
energy consumed (kwH) at default sample rate of 1 Hz (1sec).

2) Software Infrastructure:: The Odroid-XU4 platform
runs Ubuntu Linux Kernel 16.04.1 LTS that supports hetero-
geneous multi-processing. OpenCL and FreeOCL that allows
for the full concurrent exploitation of the ARM CPU and Mali
GPU were also employed for this work.

The evaluation of TEEM considers applications from the
Polybench [26] benchmark suite developed for multicore
CPUs, GPU and other accelerators. The applications used
cut across the wide application domain of the benchmark
suite [27], [28]. For instance, data mining class applications
such as correlation (CR) and covariance (CV). Others include
the linear algebraic kernels 2MM (2M) and MVT (MV),
basic linear algebraic routines GEMM (GE), SYRK (SR) and
SYR2K (S2) and the stencils such as 2D-convolution (2D).

B. Evaluation
The proposed approach termed as TEEM was compared

with the existing approach of [15] and [9], to demonstrate
energy optimization, reduced temperature gradient, perfor-
mance enhancement, and memory optimization. The approach
in [9] performs temperature-aware mapping and partition-
ing of applications on GPU or CPU-GPU based on some
performance and energy trade-off. The approach is known
as Reliable Mapping and Partitioning (RMP). In RMP, if
better temperature behavior can be obtained by running all
the application on GPU with minimal performance trade-off,
then the application is mapped on only the GPU, else the
partition of work-items on the CPU and GPU cores with
minimal performance infringement is determined. Comparing
with this shows the potential of the online performance- and
thermal-constrained optimization without a trade-off in any of
the metrics.

The approach of [15] implements energy-efficient mapping
and thread partitioning (EEMP) of applications. In EEMP,
suitable voltage/frequency for the cores used is determined
via DVFS. The dynamic power management in this means
executing at the maximum voltage/frequency and turning off
the unused cores. Comparing with this work is imperative
to demonstrate the impact of energy optimization approach
without thermal consideration.

V. RESULTS AND DISCUSSION

A. Energy Optimization
Fig. 5(a) presents the bar graphs of the energy optimization

comparison of TEEM with EEMP and RMP for some appli-
cations from the Polybench benchmark on mapping 2L+4B.
The figure shows the individual energy consumption in Joules
when different applications where used for EEMP, RMP
and TEEM approaches respectively. The thermal-constrained
threshold used for these plots is 85oC. The 85oC threshold was
chosen after several results with varying temperature threshold
values were explored and evaluated. For instance, they have
either high overheads (for high threshold) due to several fre-
quency changes at runtime or miss performance improvement
opportunities for low threshold value. This threshold however,
shows consistently improved results for all the metrics when
different mappings are used.

It can be observed for 2D and GM the overhead is 18.81%
and 30.36% respectively when compared to RMP. This is
because only the GPU cluster was used for these applications
in the RMP approach. However, this is not always the case, in
SR application for instance where the GPU was also used in
the RMP approach, the proposed approach shows an energy
saving of 47.28%. For all the considered cases, an average
of 28.32% (125J) and 13.97% (72J) of energy optimization
was achieved by the proposed approach when compared to
EEMP and RMP respectively. This further attests to the fact
that energy-saving approach without thermal consideration can
lead to an excessively high temperature [5] which could affect
performance and consequently, the energy as established in
the results of TEEM vs EEMP. Similar behavior was achieved
when different mappings are used.

B. Reduction in Thermal Gradient
Fig. 5(b) shows the temperature variation when the various

approaches are employed. It is worthy to note that while
the temperature variation in EEMP and RMP is large, the
proposed approach closely maintains the temperature around
the threshold (i.e. 85oC) which results in significant reduction
in the thermal gradient over time as shown in the figure. Even
though RMP tries to reduce the temperature variation, the pro-
posed TEEM approach is comparably better than the approach
with an average thermal gradient reduction of 76% and 45%
when compared to EEMP and RMP respectively. The pro-
posed approach also restrict the peak temperature of the chip
within the constrained threshold, unlike the EEMP and RMP
where the thermal limit of the chip is often reached. These
results vividly portray the potential of thermal-constrained
management as it mitigates the sharp temperature variation
which affects the reliability of the chip. Similar results are
also obtained when different mappings were considered e.g.
for 2L+3B, 84% and 64% reductions were achieved for EEMP
and RMP respectively.

0

100

200

300

400

500

600

700

2D CV GM 2M MV S2 SR CR

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

(a)

EEMP RMP TEEM

0

20

40

60

80

100

2D CV CR GE 2M MV S2 SR

Te
m

p
e

ra
tu

re
 (

O
C

)

(b)

EEMP RMP TEEM

0

10

20

30

40

50

60

70

2D CV GM 2M MV S2 SR CR

E
xe

cu
ti

o
n

 T
im

e
 (

S
e

co
n

d
s)

(c)

EEMP RMP TEEM

Fig. 5. (a) Energy Consumption, (b) Temperature and (c) Execution Time of different applications when employing various approaches

C. Performance Improvement
In order to substantiate the flexibility of this approach with

respect to performance, the results obtained are compared to
EEMP and RMP approaches that considered performance in
their approaches.

Fig. 5(c) shows the the bar graphs of the performance com-
parison for some applications from the Polybench benchmark
with the best partition of application workload for each of the
approaches with 2L+4B mapping. The result from Fig. 5(c)
shows that significant improvement in performance metric was
achieved for almost all the applications used when compared
to EEMP and RMP respectively. It is noteworthy that the
proposed approach achieved an average of about 28% and 24%
performance improvement when compared to EEMP and RMP
respectively. Equally, similar results are obtained with different
mappings.

D. Memory Optimization
Given the fact that embedded systems are designed within

tight resource constraint, optimum resource utilization is re-
quired. For instance, using the approach of [15], 128 design
points will need to be generated and stored in the memory
for each application which leads to lots of memory overhead
if different applications are involved. However, with this
approach, only the different models for each application and
the GPU execution time (ETGPU) are stored. This gives a total
of 2 items compared to 128 items when EEMP approach is
used. Hence an overall memory saving of 98.8% is achieved
when the proposed approach is employed.

VI. CONCLUSION
This paper proposed an online thermal- and energy-

efficiency management (TEEM) of OpenCL applications in
CPU-GPU heterogeneous mobile MPSoC. In this work, an
exhaustive evaluation of the CPU and GPU temperature,
energy and performance characteristics while running different
applications at varying frequency setting was carried out. A
model was developed using machine learning approach in R to
determine the mapping and fraction of workload within user’s
requirement. Then an online thermal-constrained process that
considerably controls the temperature within a threshold is
proposed. The proposed approach was evaluated on real-life
mobile MPSoC with different applications from Polybench
benchmark suite. The results show optimization of energy
consumption, peak temperature, performance and memory
overhead when compared to the state-of-the-art.

REFERENCES
[1] A. Prakash et al., ”Improving mobile gaming performance through

cooperative CPU-GPU thermal management,” DAC’2016.
[2] T. Mitra, ”Heterogeneous Multi-core Architectures,” IPSJ Tran. on

System LSI Design Methodology, vol. 8, pp. 51-62, 2015.
[3] A. Prakash et al., ”Energy-Efficient Execution of Data-Parallel Applica-

tions on Heterogeneous Mobile Platforms,” IEEE ICCD’15, pp. 208-215.
[4] (2017) Odroid-XU4 Manual. Odroid Magazine. Available:

https://magazine.odroid.com/odroid-xu4

[5] K. Sekar, ”Power and thermal challenges in mobile devices,” presented
at the Proceedings of the 19th annual international conference on Mobile
computing & networking, Miami, Florida, USA, 2013.

[6] D. Brooks et al., ”Power, thermal, and reliability modeling in nanometer-
scale microprocessors,” IEEE Micro, vol. 27, pp. 49-62, May-Jun 2007.

[7] G. Singla et al., ”Predictive Dynamic Thermal and Power Management
for Heterogeneous Mobile Platforms,” DATE’2015, pp. 960-965, 2015.

[8] Q. Xie et al., ”Dynamic Thermal Management in Mobile Devices
Considering the Thermal Coupling between Battery and Application
Processor,” 2013 IEEE/ACM ICCAD, pp. 242-247, 2013.

[9] E. W. Wachter et al., ”Reliable mapping and partitioning of performance-
constrained OpenCL applications on CPU-GPU MPSoCs,” presented
at the Proceedings of the 15th IEEE/ACM Symposium on Embedded
Systems for Real-Time Multimedia, Seoul, Republic of Korea, 2017.

[10] B. K. Reddy et al., ”Inter-cluster Thread-to-core Mapping and DVFS
on Heterogeneous Multi-cores,” IEEE Tran. on Multi-Scale Computing
Systems, pp. 1-1, 2017.

[11] B. Donyanavard et al., ”SPARTA: Runtime Task Allocation for Energy
Efficient Heterogeneous Many-cores,” (Codes+ISSS), 2016.

[12] V. Chau et al., ”Energy Efficient Job Scheduling with DVFS for CPU-
GPU Heterogeneous Systems,” presented at the Proceedings of the
Eighth International Conference on Future Energy Systems, Shatin,
Hong Kong, 2017.

[13] M. E. T. Gerards et al., ”On the interplay between global DVFS
and scheduling tasks with precedence constraints,” IEEE Tran. on
Computers, vol. 64, pp. 1742-1754, 2015.

[14] A. Goens et al., ”TETRiS: a Multi-Application Run-Time System
for Predictable Execution of Static Mappings,” presented at the 20th
SCOPES, Sankt Goar, Germany, 2017.

[15] A. K. Singh et al., ”Energy-Efficient Run-Time Mapping and Thread Par-
titioning of Concurrent OpenCL Applications on CPU-GPU MPSoCs,”
ACM Trans. Embed. Comput. Syst., vol. 16, pp. 1-22, 2017.

[16] K. Chandramohan and M. F. P. O’Boyle, ”Partitioning Data-parallel
Programs for Heterogeneous MPSoCs : Time and Energy Design Space
Exploration,” Acm Sigplan Notices, vol. 49, pp. 73-82, May 2014.

[17] A. K. Coskun et al., ”Proactive temperature balancing for low cost
thermal management in MPSoCs,” in ICCAD’08, pp. 250-257.

[18] A. K. Coskun et al., ”Utilizing Predictors for Efficient Thermal Man-
agement in Multiprocessor SoCs,” IEEE TCAD, vol. 28, pp. 1503-1516,
Oct 2009.

[19] Y. Liu et al., ”Thermal vs Energy Optimization for DVFS-Enabled
Processors in Embedded Systems,” in 8th ISQED’2007, pp. 204-209.

[20] S. Saha et al., ”Thermal-Constrained Energy-Aware Partitioning for
Heterogeneous Multi-core Multiprocessor Real-Time Systems,” in IEEE
RTCSA, 2012, pp. 41-50.

[21] J. Zhou et al., ”Thermal-aware correlated two-level scheduling of real-
time tasks with reduced processor energy on heterogeneous MPSoCs,”
Journal of Systems Architecture, vol. 82, pp. 1-11, 2018/01/01/ 2018.

[22] A. K. Singh et al., ”A Survey and Comparative Study of Hard and Soft
Real-Time Dynamic Resource Allocation Strategies for Multi-/Many-
Core Systems,” ACM Computing Surveys, vol. 50, Jun 2017.

[23] R. Kumar et al., ”Single-ISA Heterogeneous Multi-Core Architectures:
The Potential for Processor Power Reduction,” in Proceedings of the
36th annual IEEE/ACM International Symposium on Microarchitecture,
2003.

[24] M. H, Hnel et al., ”Heterogeneity by the numbers: a study of the
ODROID XU+E big. LITTLE platform,” presented at the Proceedings of
the 6th USENIX conference on Power-Aware Computing and Systems,
Broomfield, CO, 2014.

[25] Odroid. (2017, 10th June). SmartPower2. Available: http://odroid.com/
dokuwiki/doku.php?id=en:acc:smartpower2

[26] S. Grauer-Gray et al., ”Auto-tuning a high-level language targeted to
GPU codes,” in INPAR 2012, pp. 1-10.

[27] PolyBench/C. (2018, 10th June). PolyBench/C: The Polyhedral Bench-
mark suite. Available: https://bit.ly/2xofVPd

[28] L.-N. Pouchet and T. Yuki. (2018, 10th June). PolyBench. Available:
https://bit.ly/2NLxKSI

[29] S. Dey et al., ”EdgeCoolingMode: An Agent Based Thermal Man-
agement Mechanism for DVFS Enabled Heterogeneous MPSoCs,” in
Proceedings of VLSID 2019.

