
DeadPool: Performance Deadline Based Frequency
Pooling and Thermal Management Agent in DVFS

Enabled MPSoCs
Somdip Dey1,3, Amit Kumar Singh1, Xiaohang Wang2, and Klaus Dieter McDonald-Maier1

1University of Essex, U.K.
2South China University of Technology, China.

3Samsung R&D Institute, U.K.
Corresponding E-mail: somdip.dey@essex.ac.uk

Abstract—High operating temperature and frequent thermal
cycles in a multi-processor system-on-chip, which is now popu-
larly utilized in mobile/Edge devices, harm the overall lifespan
and reliability of such devices. In this paper, we propose an
intelligent software agent that works alongside other resource
mapping and partitioning mechanism in order to monitor and
reduce the operating temperature of the system by regulating
the operating frequency of the CPU cores while catering for
performance constraint at the same time. Our proposed ap-
proach, DeadPool thermal management agent, is able to reduce
the overall operating temperature of the system by 24.21% and
reduce thermal cycle by 67.42% at the most when compared to
the state-of-the-art methods.

Index Terms—MPSoC, DVFS, agent, performance deadline,
thermal management

I. INTRODUCTION AND MOTIVATION

In recent times we could notice an extensive use of heteroge-
neous Multi-Processor Systems-on-Chips (MPSoCs) [1]–[4] in
embedded devices, which employ several types of processing
elements within a single chip to deliver power as well as
energy efficient computing capabilities. A lot of research is
performed to develop algorithms that cater for performance
[5]–[7], but comparatively less amount of research could be
found which focuses on developing algorithms that cater for
temperature-aware energy efficient allocation of computing
resources in such embedded devices while meeting end-user
demands for performance.

Elevated operating temperatures and thermal cycling on the
device have adverse effects on Integrated Circuits (ICs) and
reliability of electronic products can be heavily influenced by
spatial or temporal gradients or absolute temperatures [8]–[10].
Here, thermal cycling is the phenomenon of the operating tem-
perature increasing from an initial value and then decreasing
to the starting value periodically, and each occurrence of the
phenomenon is signified as one thermal cycle. To mitigate
reliability issues as a result of increased operating temperature
and thermal cycling most mobile devices often come with
thermal capping. Nowadays devices often come with hard-
wired Thermal Management Units (TMUs) as well as software
TMUs which regulates the energy consumption as well as the
temperature of the associated components. However, so far
none of these state-of-the-art thermal management units have
been proven to be effective enough to cater for performance,
energy efficiency as well as thermal-regulation at the same
time.

Majority of the published noteworthy studies [10]–[13]
were implemented and experimented in simulations such as

Sniper [14] multicore, Synopsys software, etc. instead of
experimenting on real devices, which could differ from the
practical results achieved from real devices. In two other
studies [15], [16], the depicted methods involve predicting the
future core temperatures to adjust the workloads or frequencies
before exceeding a set threshold, but computation of such
predictive temperatures increase the performance overhead
of such methods. In a different study [9], the researchers
proposed a thermal management mechanism implemented on
Q-Learning based reinforcement learning (RL) strategy to
optimize thermal behavior while improving performance, but
such a method has its own limitations. In Q-Learning based
RL [9], the mechanism takes a decision (action) and profiles
the outcome (state), and then keep a record of the actions and
states in a table called, ”Q-table” to learn from it consecutively.
However, Q-Learning based mechanisms incur an overhead of
traversing the table and learning from it, especially if the table
contains a lot of actions and states, while catering for thermal
reduction objective. Hence, the specific challenges this paper
tries to address is as follows:

1) Design a light-weight thermal management mechanism,
which is intelligent enough to cater for performance as
well as maintain a desirable temperature of the cores.

2) The mechanism has to be self-adapting as the device
ages due to degradation in the chemical properties of
the device itself such that the thermal management
mechanism can continue being effective with time.

To address the aforementioned challenges and to overcome
the limitations of the existing approaches we propose an
agent based thermal management mechanism called DeadPool
TMA: Performance Deadline Based Frequency Pooling and
Thermal Management Agent, which is capable of catering
for both performance and reduced operating thermal behavior
of the device. DeadPool TMA or in extended abbreviation,
DeadPool is a software agent that monitors the operating
temperature and then selects the appropriate frequency from
the pool of available frequencies so that temperature is low
while catering for performance deadline profiled from previous
executions of the same application. Our DeadPool agent is
able to outperform the state-of-the-art thermal management
mechanism even after being simple in design. To this end,
this paper makes the following contributions:

1) A thermal management mechanism to monitor and re-
duce temperature of the CPU cores to improve the relia-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/327079524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

bility of the system without compromising performance
of the executing applications.

2) Implementation and validation of the proposed thermal
management intelligent agent on a real hardware plat-
form, the Odroid-XU4.

65

75

85

95

105

115

125

135

145

120

320

520

720

920

1120

1320

1520

1720

1920

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0

9

1
2

1

1
3

3

1
4

5

1
5

7

1
6

9

1
8

1

1
9

3

2
0

5

2
1

7

2
2

9

2
4

1

2
5

3

2
6

5

2
7

7

2
8

9

3
0

1

3
1

3

3
2

5

3
3

7

3
4

9

3
6

1

3
7

3

3
8

5

3
9

7

Frequency Temperature

Fr
eq

u
en

cy
 (

M
H

z)

Te
m

p
er

at
u

re
 (

D
eg

re
e

C
en

ti
gr

ad
e)

Fig. 1. Frequency and Temperature over the execution period (secs) of
Streamcluster using Linux’s ondemand governor

80

85

90

95

100

105

110

1500

1550

1600

1650

1700

1750

1800

1850

1900

1950

2000

1 16 31 46 61 76 91 10
6

12
1

13
6

15
1

16
6

18
1

19
6

21
1

22
6

24
1

25
6

27
1

28
6

30
1

31
6

33
1

34
6

36
1

37
6

39
1

Frequency Temperature

Fre
qu

en
cy

 (M
Hz

)

Te
mp

era
tu

re
(D

eg
ree

 Ce
nt

igr
ad

e)

Fig. 2. Frequency and Temperature over the execution period (secs) of
Streamcluster using DeadPool TMA

A. Motivational Analysis
We present a couple of empirical studies to motivate the

need for a thermal management strategy, which is capable of
catering for performance and thermal requirement at the same
time, such as the case of DeadPool.

1) Frequency scaling and thermal behavior: An important
observation, which is worth mentioning is that when we
executed a mixed load (compute intensive as well as memory
intensive) program on the ARM Cortex A-15 CPU cores
on an Odroid XU4 [17] platform, which houses the ARM’s
big.LITTLE architecture (4 ARM Cortex A-15 (big) CPUs and
4 ARM Cortex A-7 (LITTLE) CPUs) and 6 ARM Mali-T628
GPU, the core temperature rises very fast due to executing
workloads that are both compute and memory intensive. Fig.
1 graphically represents the operating frequency and operating
temperature (in °Centigrade) of the big core, which has the
worst temperature behavior1 on Odroid XU4 while executing
Streamcluster2 from the PARSEC benchmark suit [18] on
Linux OS, running with Ondemand governor power scheme. In
Fig. 1, the horizontal axis represents the execution time steps
whereas the vertical primary axis (left-hand side) reflects the
operating frequency (in MHz) of the big cores on which the
program is executing and the vertical secondary axis represents

1Usually the cores exhibit worse temperature behavior, which are residing
close to the memory.

2We choose the native option of the Streamcluster to mimic real-world data-
mining algorithms, which are both compute intensive and memory intensive.

the operating temperature (in °Centigrade) of the big core with
worst temperature behavior. Upon close inspection we could
notice that the maximum temperature reached amongst the
ARM big cores is 95°Centigrade with an execution time of
433.12 secs while executing Streamcluster with native option
on the ondemand governor. Since the CPU temperature reaches
95°Centigrade, the default thermal management unit (TMU)
of the OS under ondemand governor starts to regulate the
operating frequency and as a result, reduces the temperature
of the cores by CPU throttling3. Although CPU throttling is
good in terms of reliable operations but the stock thermal
management algorithm of the OS is not intelligent enough
to provide performance at the same time. In Fig. 1 we could
notice that the clock speed varies from 2000 MHz to 900
MHz over time, which causes a drop in performance of
the executing application(s). In comparison, when we utilize
DeadPool, which adheres to the strict performance and tem-
perature deadline collected through offline/online profiling (of
Streamcluster), while executing Streamcluster in native mode,
we are able to achieve 7.44% (see Fig. 4) reduction in average
operating temperature (in °Centigrade) of the big core, which
has the worst temperature behavior during the execution, yet
taking the same execution time as the ondemand governor.
While executing Streamcluster on DeadPool the performance
deadline was set to be the execution time of the program while
running on the ondemand governor.

2) Reduction in spatial and temporal thermal gradient:
In another experiment, we executed Blackscholes benchmark
from the PARSEC [18] benchmark suit on the big CPU cores
of Odroid XU4, which we denote as CPU 4, 5, 6 and 7
consecutively in our experiments, using different thermal man-
agement strategies including DeadPool. When we executed
Blackscholes on the 4 big CPUs using performance governor
it took 91.302 secs and peak operating temperature of all 4
big CPUs reached close to 95°C, which is reflected in Fig.
3.(a). Fig. 3.(a) shows the variation in operating temperature
of the 4 big CPUs over time (reading taken every 100 ms).
Whereas, when we executed Blackscholes using DeadPool
while having the execution time (performance) deadline set to
the execution time taken during the performance governor, we
are able to reduce the overall operating temperature by 24.21%
while catering for performance (see Fig. 3.(b)). Comparing the
results of Fig. 3.(a) and 3.(b), we could certainly notice that
DeadPool is also capable of reducing spatial and temporal
thermal gradient of the CPUs, and not just the overall peak
temperature. Here, the term ”thermal gradient” signifies the
physical quantity that describes in which direction and rate
the temperature is changing.

Therefore, the results from the aforementioned experiments
proved that default scheduling strategies (governors), which
come bundled with the Linux, are not capable of handling both
performance of the executing program and reduce operating
temperature of the device at the same time. On the other
hand, DeadPool is able to cater for performance requirement
while reducing spatial and thermal gradient of the device while
executing the application.

3Adjusting the clock speed of the CPU to use less power consumption and
thus reduce CPU temperature for improved reliability.

(a) Using Performance governor (b) Using DeadPool TMA

Fig. 3. Operating temperature over time while executing Blackscholes on 4 ARM Cortex A-15 (big) CPUs using DeadPool TMA and Performance governor

II. RELATED WORK

One noteworthy study in thermal management of the device,
pursued by Kamal et al. [11] proposed a heuristic based
thermal stress-aware mechanism for management of power
and temperature in MPSoCs formulated in a convex opti-
mization problem to reduce thermal gradient of the device.
This approach was implemented on Sniper multicore simulator
[14] and was able to reduce spatial and temporal thermal
gradients by 7% and 18% respectively. In a different study,
Iranfar et al. [9] proposed a thermal management mechanism
utilizing heuristic based reinforcement learning (RL). In [9],
the mechanism uses thread migration and DVFS as actions
of Q-Learning based RL to optimize power and thermal
gradient while improving performance, and Sniper multicore
simulator is utilized to prove the efficacy of the mechanism,
which was able to reduce thermal cycle by 39%, temporal
thermal gradient by 34% and spatial thermal gradient by
21%. In another work by Iranfar et al. [10], the researchers
proposed a multi-tier hierarchical thermal stress-aware power
and temperature management framework for MPSoCs, where
the methodology used similar convex optimization solution
in multi-layer to improve mean time to failure (MTTF)4.
The effectiveness of this methodology is again proved based
on simulations performed on Sniper multicore simulator. All
the aforementioned noteworthy studies were implemented and
experimented in simulations5 instead of experimenting on real
devices, which could differ from the practical results achieved
from real devices because there are so many other contributing
factors that account for the operating temperatures such as
ambient surrounding temperature, chemical reactions on the
devices due to weather change, etc.

Moreover, [10], [11], [14] do not actively cater for per-
formance while actively catering for thermal gradient reduc-
tion on the device whereas, [9] does focus on improving
performance of the executing application while optimizing
operating thermal behavior of the device but Q-Learning based

4Mean time to failure (MTTF) is the length of time a device is expected
to operate/last till failure.

5Although modern simulators such as Sniper multicore provides simulation
results very close to real devices but there are many unaccountable factors that
could happen when executed on a real device instead of simulation, especially
in case of temperature variance.

DeadPool TMA on MPSoC

App1

Appn

Evaluate Fi, Ti, ?,
?, li and Tthreshold
for Appi (i=1,..,n)

based on
performance

deadline

Profile
Data

Evaluate
Fdesired to

achieve Tdesired
< Tthreshold

Fi, Ti, ?, ?, li
and Tthreshold

Continuously Learning/Running

Learning Module Decision Module

Fig. 4. Block diagram of DeadPool thermal management agent

reinforcement learning approaches have their own limitation.
In Q-Learning, convergence of the reinforcement learning is
dependent on the number of actions and states in the Q-table.
Since, thermal behavior on mobile devices for applications
is not constant and dependent on many factors such as
computation being performed at the moment, size of the data
for computation, ambient temperature, other interrupt services
which are capable of changing the work-flow of executing
application, and hence, the size of Q-table could be large
to solve convergence of learning after incorporating all the
possible actions and states. Therefore, the size of Q-table could
contribute to an overhead of taking an action, but thermal
strategies on the device require a more light weight learning
mechanism to overcome such limitations.

In our approach, we utilize the concept of intelligent
software agents and linear regression based semi-supervised
machine learning to design a light-weight fast heuristic based
operating temperature regulator, which could be used on top
of any scheduler or governor or any other types of system
resource manager to achieve efficient operating temperature
without sacrificing performance requirement of the executing
applications.

III. PROPOSED METHODOLOGY: DEADPOOL

There are four schools of thought for artificial intelligence
[19]: Thinking Rationally [20], Acting Rationally [21], Think-

ing Humanly [22] & Acting Humanly [23], where intelligent
agents are built or designed to portray each school of thought.
In our approach, DeadPool, we propose an intelligent software
agent that is a continuous running application and sits in
the application layer of the OS to monitor the operating
temperature of the system while executing an application.
DeadPool controls the thermal behavior of the system by
Thinking and Acting Rationally based on our heuristic ap-
proach and works along side existing resource manager, which
effectively maps and allocates tasks to the CPUs. Over time it
creates a relationship between the operating temperature of an
application and the operating frequency of the CPUs taking
leverage of DVFS capabilities of the MPSoC. The DeadPool
has two modules in it: Learning and Decision Modules. Fig.
4 shows the block diagram of the agent.
Assumptions: Since, majority of the modern mobile/Edge
devices utilize cluster wise DVFS, DeadPool’s implementation
is written taking cluster wise DVFS into perspective. If we
assume Pthreshold is the performance deadline by which the
executing application has to be finished and Tmax is the
maximum operating temperature of the device while catering
for P , and Tthreshold is the maximum operating temperature,
which is set as the thermal cap that the system should not
exceed, of the cores in cluster, then our methodology applies
for cases where Tmax ≤ Tthreshold.

A. Learning Module

In the Learning Module the DeadPool first gets the perfor-
mance deadline6 (Pthreshold) and the operating temperature
threshold (Tthreshold) for an executing application. Here, the
value of Tthreshold is less than the default thermal cap set in
Linux and the main objective of DeadPool is to execute the
program at a frequency which will adhere to Pthreshold and
Tthreshold. Pthreshold for an executing application is either
user-provided or is fetched by profiling the application in
advance by executing it several times and the best performance
out of all the profiling execution is noted and fed to DeadPool
as Pthreshold. Then DeadPool reduces the operating frequency
of the CPUs to next lower frequency level step and records
the operating temperature as well as the operating frequency
such that a regression equation (see Eq. 1) could be formed.
After using the Eq. 1, it evaluates the value of α over time.
In Eq. 1 Fi is the operating frequency at time instance i, Ti is
the operating temperature at the same time instance, α is the
relationship variable and β is the error defining variable. Now,
for each instance of operating frequency (Fi) the agent maps
it to an instance of a peak operating temperature of the cluster
cores (Ti) (Fi 7−→ Ti) as well as performance (Pi) of the
executing application. Therefore, operating frequency instance
could be mapped to a tuple of peak operating temperature
and performance instance (Fi 7−→< Ti, Pi >). Here, the peak
operating temperature is the maximum operating temperature
of the core among all the other cores in the cluster. By reducing
the frequency (using DVFS capabilities) by a certain number
of frequency scaling levels7, different Fi, Ti, α, β & frequency
scaling level reduction steps (li) are recorded by the agent,

6Performance deadline depends on the type of applications. For some
application it could be execution time deadline or for computer vision
applications it could be desired frames per second, etc.

7For example ARM Cortex A-15 CPUs in the Odroid XU4 has 19 frequency
scaling levels.

which would be used to decide which frequency to drop to in
the Decision module. In contrary to majority of Q-Learning
based thermal management schemes where all the actions and
states have to be recorded for convergence of learning, in
DeadPool only the values of α and β have to be stored, since
DeadPool can compute the predicted operating temperature in
the future by using those values (see Decision module - Sec.
III-B).

DeadPool continues to reduce the frequency (Fi − li =<
Ti, Pi >)(using Eq. 2) and maps frequency to temperature
until the performance deadline for the executing application
is met i.e. Pi ≤ Pthreshold. If performance deadline is not
met i.e. Pi ≥ Pthreshold then it stops reducing the frequency
and increases it to the next frequency scaling level in contrary
(Fi + li =< Ti, Pi >). However, when the temperature starts
to rise up again i.e. Ti → Tthreshold, the agent reduces
the frequency as mentioned above while meeting the perfor-
mance deadline i.e. Pi ≤ Pthreshold. DeadPool tracks the
instantaneous operating temperature and performance of the
application periodically and this is called as the control period.
For our implementation the control period is set to 100 ms
and hence in every 1 second DeadPool checks the operating
temperature and performance 5 times so that it could learn
and decide the next action to take. However, 100 ms control
period suits the set of applications being used for our device
and could be set to any value as the user sees fit for their
system but it has to be kept in mind that a higher value of
control period means the agent is less responsive in learning
and taking decision.

Ti = α× Fi + β (1)

Fi ± li =< Ti, Pi > (2)

B. Decision Module
In the Decision Module, the DeadPool uses the relationship

variable (α), error variable (β), frequency scaling level steps
li computed from Learning Module and calculates the desired
frequency (Fdesired) using the following equation:

Fi − Fdesired = (Ti − Tdesired)/(α) ,

where Tdesried < Tthreshold
(3)

DeadPool then tries to find the least value of (Fi−Fdesired)
i.e. the least number of frequency scaling level, it should
drop to so that the operating temperature could be reduced
without affecting the overall performance of the executing
application as opposed to what generic TMUs or DPTMs8

do. Here Fi is the current operating frequency and Fdesired is
the operating frequency to which the CPU should drop to in
order to provide performance as well as reduced operating
temperature (Tdesired), which is lower than Tthreshold, as
opposed to current operating temperature (Ti). Therefore, from
the Eq. 3 the agent has to find the least value of (Fi−Fdesired)
out of all n possibilities by computing the predictive operating
temperature using the values of Tthreshold, αi & βi for every
frequency scaling level steps (li).
Example: The Fi is 2000 MHz and Ti is 75°C, but the
goal is to reduce the operating temperature by 1°C, therefore,
Tdesired becomes 74°C. Now after utilizing the saved value of

8DPTM is Dynamic Power and Thermal Management techniques that
regulate both power and temperature.

(a) Thermal cycles for different applications when employing different
power & thermal management schemes

(b) Maximum operating temperature (°C) over time (secs) for Blacksc-
holes while employing different power & thermal management schemes

Fig. 5. Thermal cycle and maximum operating temperature reduction employing different methodologies for different applications

α, Fdesired is evaluated to be 1800 MHz (using Eq. 3) then
the operating frequency needs to be reduced by 2 frequency
scaling steps (= 2000−1800

100), given the fact that the device
allows each frequency scaling level steps of 100 MHz.

IV. EXPERIMENTATION AND VALIDATION RESULTS

A. Experimental Setup
We implemented our proposed DeadPool software agent

in an Odroid XU4 [17] on top of the Memory Reads Per
Instruction (MRPI) approach9 based Mapping and Resource
Manager [24] as well as on stock Linux Governors to perform
the experiments and show the effectiveness of our method-
ology. Since Odroid XU4 only has temperature sensors on
ARM Cortex A-15 big CPUs and Mali-T628 GPU, to validate
our approach we have executed the applications on the big
CPU cores referred to as CPU 4, CPU 5, CPU 6 & CPU
7, and observed the thermal variance over time. We have
run all our experiments on UbuntuMate version 14.04 (Linux
Odroid Kernel: 3.10.105). We executed several benchmark
applications from the PARSEC [18] suit such as Streamcluster,
Blackscholes, etc. We have also played Youtube videos on
Chromium browser and ran RSA encryption and decryption
on 512, 1024, 2048 and 4096 bits.

B. Experimental Results
Fig. 5 shows that DeadPool was able to reduce the thermal

cycle in the system by 59.59% in comparison to Linux’s
Ondemand governor and by 62.21% in comparison to Per-
formance governor for Streamcluster benchmark, whereas it
achieved reduction of thermal cycle by 46.496% at most in
comparison to MRPI for the same. Deadpool reduced thermal
cycle by 67.42% for Blackscholes benchmark in comparison
with performance governor. DeadPool was also able to reduce
the overall operating temperature by 24.21% (see Fig. 5.b)
for Blackscholes compared to Linux’s Performance governor
while executing the application.

Fig. 6 shows the operating temperature values on 4 ARM
Cortex A-15 big CPU cores while executing Streamcluster
benchmark with native option and employing Ondemand
governor and DeadPool. In all the figures, we have only

9In the study [24], the researchers have proposed a novel workload
management system, which classifies workloads of the executing applications
based on MRPI metric and manages DVFS levels of cores.

shown fraction of the total execution period of each application
because there was similar behavior in temperature during
execution time. While using Ondemand governor the average
temperature on on each ARM big core (CPU 4, CPU 5, CPU
6 & CPU 7) are 74°C, 73°C, 80°C, 78°C respectively and
the maximum temperature on CPU 4, CPU 5, CPU 6 &
CPU 7 are 86°C, 84°C, 94°C, 92°C respectively. Whereas,
using the DeadPool the average temperature on each ARM
big core is 81°C, 79°C, 87°C, 85°C respectively and the
maximum temperature on each big core is 90°C, 81°C, 90°C,
91°C respectively. Therefore, DeadPool is able to reduce the
maximum operating temperature of the big CPUs by 6.25%
while executing Streamcluster over time.

Fig. 7 shows the operating temperature values on 4 ARM
Cortex A-15 big CPU cores while playing Youtube video
on Chromium browser by employing Ondemand governor
and DeadPool. While using Ondemand governor the average
temperature on each ARM big core is 74°C, 73°C, 80°C, 78°C
respectively (not including the decimal digits after evaluating
average) and the maximum temperature on each big core are
90°C, 86°C, 95°C, 94°C. Whereas, using the DeadPool the
average temperature on each ARM big core is 75°C, 74°C,
82°C, 80°C respectively (not including the decimal digits after
evaluating average) and the maximum temperature on each
big core are 84°C, 80°C, 90°C, 88°C. Therefore, DeadPool is
able to reduce the maximum operating temperature of the big
CPUs by 5.26% while playing Youtube videos on Chromium
browser over time.

We have also compared our agent based approach with
TheSPoT thermal management mechanism [10], which is able
to reduce peak temperature by 24% for their heuristic approach
and by 18% for their optimal approach while executing
Blackscholes. TheSPoT also has a performance overhead of
4.8% and 3.5% for their heuristic and optimal approaches
respectively. In comparison, DeadPool is able to achieve
24.21% reduction in temperature for Blackscholes without
compromising performance and hence, outperforms the TheS-
PoT. On the other hand, when we compared DeadPool with
the thermal management mechanism implementing heuristics
based reinforcement learning (RL) [9], DeadPool was able
to reduce operating temperature by 24.21% at the most and
reduce thermal cycle by 62.21% at the most whereas, RL based
strategy was only able to reduce the operating temperature by
21% at the most and reduce thermal cycle by 39% at the most.

(a) Ondemand governor (b) DeadPool TMA

Fig. 6. Temperature values (°C) over time (secs) on 4 ARM Cortex A-15 big CPUs while executing Streamcluster benchmark with native option using
Ondemand & DeadPool TMA

(a) Ondemand governor (b) DeadPool TMA

Fig. 7. Temperature values (°C) over time (secs) on 4 ARM Cortex A-15 big CPUs while playing Youtube video on Chromium browser with native option
using Ondemand & DeadPool TMA

V. CONCLUSION

In this paper, we proposed a light-weight intelligent soft-
ware agent based mechanism that can monitor and reduce the
operating temperature of the system by regulating the operat-
ing frequency of the CPU cores while catering for performance
constraint of an executing application. Our proposed approach
is able to reduce the operating temperature by 24.21% at
most when compared to state-of-the-art resource management
mechanism and also reduce the thermal cycle of the system
up to 67.42% for certain applications.

ACKNOWLEDGMENT

This work has been supported by the UK Engineering and
Physical Sciences Research Council EPSRC [EP/R02572X/1
and EP/P017487/1], the Natural Science Foundation of Guang-
dong Province No. 2018A030313166, and Pearl River S&T
Nova Program of Guangzhou No. 201806010038. Somdip
would also like to thank his colleagues from the University
of Essex, the Samsung R&D Institute UK, and his parents for
their support.

REFERENCES

[1] S. Isuwa et al., “Teem: Online thermal- and energy-efficiency manage-
ment on cpu-gpu mpsocs,” in 2019 Design, Automation, and Test in
Europe (DATE 2019). IEEE, 2019.

[2] S. Dey et al., “Edgecoolingmode: An agent based thermal management
mechanism for dvfs enabled heterogeneous mpsocs,” in 2019 32nd
International Conference on VLSI Design and 2019 18th International
Conference on Embedded Systems. IEEE, 2019.

[3] ——, “Mat-cnn-sopc: Motionless analysis of traffic using convolu-
tional neural networks on system-on-a-programmable-chip,” in 2018
NASA/ESA Conference on Adaptive Hardware and Systems (AHS).
IEEE, 2018.

[4] ——, “Energy efficiency and reliability of computer vision applications
on heterogeneous multi-processor systems-on-chips (mpsocs),” in Adap-
tive Many-Core Architectures and Systems workshop, York, UK.

[5] A. K. Singh et al., “A survey and comparative study of hard and soft
real-time dynamic resource allocation strategies for multi-/many-core
systems,” ACM CSUR, vol. 50, no. 2, 2017.

[6] ——, “Learning-based run-time power and energy management of
multi/many-core systems: current and future trends,” JOLPE, vol. 13,
no. 3, 2017.

[7] B. K. Reddy et al., “Online concurrent workload classification for multi-
core energy management,” in DATE, 2018.

[8] K. DeVogeleer et al., “Modeling the temperature bias of power con-
sumption for nanometer-scale cpus in application processors,” in 2014
SAMOS XIV, 2014.

[9] A. Iranfar, S. N. Shahsavani, M. Kamal, and A. Afzali-Kusha, “A
heuristic machine learning-based algorithm for power and thermal man-
agement of heterogeneous mpsocs,” in 2015 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED). IEEE,
2015.

[10] A. Iranfar et al., “Thespot: Thermal stress-aware power and temperature
management for multiprocessor systems-on-chip,” IEEE TCAD, vol. 37,
no. 8, 2018.

[11] M. Kamal et al., “A thermal stress-aware algorithm for power and
temperature management of mpsocs,” in 2015 DATE & Exhibition, 2015.

[12] M. Ghasemazar et al., “Robust optimization of a chip multiprocessor’s
performance under power and thermal constraints,” in IEEE ICCD, 2012.

[13] H. Amrouch et al., “Voltage adaptation under temperature variation,” in
IEEE SMACD, 2018.

[14] T. E. Carlson et al., “Sniper: Exploring the level of abstraction for
scalable and accurate parallel multi-core simulations,” in SC, Nov. 2011,
pp. 52:1–52:12.

[15] G. Singla et al., “Predictive dynamic thermal and power management
for heterogeneous mobile platforms,” in 2015 DATE & Exhibition, 2015.

[16] G. Bhat et al., “Algorithmic optimization of thermal and power manage-
ment for heterogeneous mobile platforms,” IEEE TVLSI, vol. 26, no. 3,
2018.

[17] “Odroid-xu4,” https://goo.gl/KmHZRG, accessed: 2018-07-23.
[18] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,

Princeton University, January 2011.
[19] M. Negnevitsky, Artificial intelligence: a guide to intelligent systems,

2005.
[20] D. McDermott and E. Charniak, “Introduction to artificial intelligence,”

Reading: Addison-Wesley, 1985.
[21] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach,

2016.
[22] J. Haugeland, “Artificial intelligence: The very idea. 1985,” Cited on,

1985.
[23] E. Rich and K. Knight, “Artificial intelligence,” McGraw-Hill, New,

1991.
[24] B. K. Reddy et al., “Inter-cluster thread-to-core mapping and dvfs on

heterogeneous multi-cores,” IEEE TMSCS, 2017.

