
SD-MARC: A New Multi-Processor Architecture

A. Somdip Dey
Department of Computer Science,

 St. Xavier’s College [Autonomous]
Kolkata, India.

Abstract - In modern day, HPC (High Performance
Computing) is applied to do massive scientific or huge
computational works, but HPC architecture mostly consist of
computer clusters (series of computers connected to each other
to solve a single problem / task). Thus it is problematic for
many institutions or organizations to maintain a computer
cluster for doing huge computation. So, with the advancement
of technology and efficient multiprocessor architecture, it is
possible to integrate thousands of processors in one computer
system and apply that system for doing the huge computation.
This paper basically provides the idea of a new model to apply
multiple processors (in order of n2 (n x n) processors) in one
computer system Architecture and how to implement the model
to compute different problems faster than they can compute in
reality; provided: n>=4 and n=2m, where m=0, 1, 2, 3, 4
…….. N.

Keywords: Multiprocessor; High Performance Computing;
Architecture; Matrix; Computer model;

1 Introduction
With the rising demand of Computational power,

new architecture in multiprocessor system and
technology advancement in multicore computers have
been seen. This gave rise to High Performance
Computing and parallel processor computer systems.
Now a day huge processing power is required to compute
and process a huge amount of data. So there is indeed an
urgent need in advanced multiprocessor computer
architecture to compute these huge amount of data within
a short span of time.

The objective of this paper is to provide an
overview concept of a new architecture in Multiprocessor
System and how this architecture, SD-MARC, is
beneficial in terms of computation and how to implement
it.

2 The Architecture
This section covers the details regarding the architecture
of SD-MARC.

Before moving on to SD-MARC, first let us see the
various techniques and architectures used in
multiprocessing systems.

Multiprocessor architecture can be basically classified
into:

1. Symmetric Multiprocessing (SMP)
2. Asymmetric Multiprocessing (AMP)
3. NUMA (Non Uniform Memory Access
Multiprocessing)
4. Cluster Multiprocessing (CM) [Concept of Distributed
Computing]

SMP (Symmetric Multiprocessing):

In a multiprocessing system, when all CPUs / processors
are treated equally, then the system is called Symmetric
multiprocessing system (SMP). In SMP two or more identical
processors are connected to a single shared main memory
(computer memory) and are connected by a single Operating
System instance, i.e. monolithic kernel type of OS (Operating
System) is used for this type of system to utilize the resources.
Now a day most of the multiprocessor architecture uses SMP.
In SMP the processors are either connected to each other buses
or crossbar switches or on-chip mesh networks.

 The advantages of SMP include a large global memory
and better performance per power consumption by the system.
SMP also provides simple node-to-node (processor to
processor) communication. The main disadvantages of SMP
include the fact that the memory latency and bandwidth of a
given node can be affected by other nodes, and cache
“thrashing” may occur in some applications.

AMP (Asymmetric Multiprocessing):

AMP (Asymmetric Multiprocessing) designs uses SMP
hardware architecture where a common global memory is
shared between the various processors. In AMP designs,
application tasks are sent to the system’s separate processors.
These processors may all be located on different boards or
collocated on the same board, but each is essentially a separate
computing system with its own OS and memory partition
within the common global memory. One advantage of an AMP
design is that asymmetric memory partitions can be assigned

from one large global memory, making more efficient use of
memory resources and potentially reducing system cost.

SMP architectures differ from AMP in that a single block
of memory is shared by the multiple processors or by multiple
cores on a single multi-core processor. A single OS (Operating
System) image runs across all the cores enabling truly parallel
processing.

NUMA (Non Uniform Memory Access Multiprocessing):

In NUMA (Non Uniform Memory Access)
multiprocessing the memory access time depends on the
memory location relative to a processor. In recent time
processors work faster than the memories used by them, so
there is a big gap in the speed of a processor and a memory. So
in a multiprocessor architecture to get high performance, one
person have to install high-speed cache memory and use
advanced algorithm to reduce the cache-‘miss’. NUMA tries to
solve this problem by providing separate memory for each
processor, avoiding the performance hit when several
processors attempt to address the same memory.

CM (Clustered Multiprocessing):

In Clustered Multiprocessing, many computers are
loosely connected to each other, which forms computer cluster,
and they work together so that in many respects they can be
viewed as a single system. Usually the computers in a cluster
are connected via high speed local area networks and this
concept evolved from the concept of Distributed Computing,
where different computers are connected to do one common
task or achieve one same goal. In CM architecture we can see
the use of master node and computing node, where the master
node controls and distribute work (processes) to the compute
node.

In SD-MARC, we combine the logic and ideas of most of
these multiprocessor architecture, so that a new powerful
architecture can be made out of it and can be implemented to
compute faster and save cost of implementation relatively.

2.1 SD-MARC:

A. The Basic Design of SD-MARC

The basic design of SD-MARC consist of n2 (‘n x n’)
number of processors. Here, in this architecture the
arrangement of the processors can be thought of square matrix
formation of ‘n x n’, where ‘n x n’ signifies the square matrix
system in which the number of columns and the number of rows
are equal to ‘n’ and, n>= 4 and n is even number, i.e. n=2m ,
where m= 1,2,3,4,5,……………

 So, from the above statement we get to know that the
system consist of ‘n x n’ number of processors, as shown in the
Fig 1.1, where the processors or the CPU (Central Processing
Unit) are arranged in ‘4 x 4’ formation and the total number of
processors in this figure is 16 processors / CPU:

N.B.: In Fig 1.1 the number of processors in each row and
each column are 4 and so it forms 4 x 4 multiprocessor
system. From the figure Fig 1.1 we can see that 16 processors
are arranged in 4 x 4 matrix formation and just like this ‘n x n’
number of processors can be arranged in the ‘n x n’ square
matrix formation, where each row and each column contains
‘n’ number of processors.

Now this ‘n x n’ processor formation can be further
divided into four divisions: Division 1, 2, 3, 4, where each
division will have ((n x n) / 4) number of processors. So for
example, if a system consists of 16 (4 x 4) processors then
each Division will have 4 processors in it, or, for example in a
system of 36 (6 x 6) processors there will be 9 processors in
each division. This concept of Division system can be clear
from the Fig 1.2, where the Division System of the Processors
in 4 x 4 processor system has been shown.

Now along with this Division System we can use the
concept of Computer Clusters. In Computer Clusters there is a
concept of Master Node and Compute Node, where the
Master node distribute the workload to different Compute
node. Just like this concept, in the Division System of
multiprocessor architecture, the concept of ‘Master
Processors’ are implemented. Each division of processors has
a master processor, which distribute the workload of that
division to the different other processors, namely called
Compute Processors, in that division. So basically there are 4
master processors in this multiprocessor architecture system.

Each Division has the processors numbered in order, like,
CPU 1, CPU 2,……… and out of these processors, one is a
master processor of that division, which is denoted as M CPU,
as shown in Fig 1.3. So in the first division, i.e. Division 1,
there will be CPU 1 to CPU j, where ‘j’ is the last processor
number in that division and the starting number of processor in
the next division will be CPU j+1, which goes up to CPU k,
where ‘k’ is the last processor number in the Division 2, and so
on.

In this system the 4 master processors are placed in side
by side fashion, so that they can communicate with each other
easily and very fast. The 4 master processors of 4 divisions
communicate with each other time to time and synchronize
among themselves the works / processes they are coordinating.
The above mentioned concept can also be figured out from the
Fig 1.3.

B. Processor Architecture and Relation between each
Processor

 Each processor will have high speed register memories of
their own along with L1 (Level 1) Cache memory. Two
adjacent processors / CPUs will be having or sharing a L2
(Level 2) Cache memory and then four adjacent processors
will share L3 (Level 3) Cache memory. In Fig 2.1 we can
visualize the concept clearly, where the relation between
processors/CPU in terms of memory has been shown.
 In modern world, the main computer memory can be
classified basically in three ways:

a. Distributed Memory
b. Shared Memory

c. Distributed Shared Memory
Mostly Distributed Memory and Distributed Shared Memory
concepts are used in case of computer architecture, where
each CPU has a private memory block of its own.
 But in this architecture a concept of ‘Hybrid Memory
Distribution’ is used. The ‘Hybrid Memory Distribution’
concept is: A memory block will not be private only to one
CPU but each memory block will be shared by four CPUs /
Processors, as seen in the Fig 2.1.

Since, four CPUs will be sharing only one memory, so
there can be possibility of resource holding, which may give
rise to Dead-lock situation. So to do away with that, each
memory block will have memory address of its own and that
memory address will not be same in any way in any of the
other memory blocks. For example, in Memory 1the starting
address is 1000 (Hex Address) and the end address in the
memory is F000 (Hex Address), then the starting address in
Memory 2 can be F001 (Hex Address) and the address in
memory2 will never be the same as the addresses in Memory
1.

So from Fig 2.1 we can see that one memory is shared by
four CPUs and these four CPUs form a ‘Block’. In Fig 2.1 we
can see two blocks of CPUs, Block 1 and Block 2. Basically
in this architecture the whole multiprocessor system is divided
in ‘matrix’ system, then each matrix system is divided in four
‘Divisions’ and at last each division has several Blocks.

Now each block has a memory of its own which is not
shared with other blocks or other CPUs of other blocks, and
the addresses in the memory never coincide with the address
of other memories of other blocks.

 If a matrix system of multiprocessor is of such a form
that ((n x n) / 4) = ans, where ans is not perfectly divisible by
4 again then that system must have a sinlge CPU / processor
left out of the block formation. For example there are 36
processors in a system then it is of form ‘6 x 6’ CPU system.
Now if we form four Divisions then there will be 9 CPUs in
each Division. And if we try to form Blocks out of each
Division then we can see that only two blocks can be made in
each Division and there will be one CPU left out of the block
in that Division. Then in that case we will consider the last
CPU as the Master CPU and will attach that CPU to the last
block formed in that Division. This concept can be clear from
the Fig 2.2.
N.B.: In Fig 2.2 The ‘BUS’ means the Bus system through
which each of the interaction of CPUs and memory system
takes place.
Since ‘6 x 6’ multiprocessor system is taken as an example so
as from Fig 2.2 we can see that these two Blocks are in each
Division and so there are 8 Computer Memory in the
architecture.

C. Interaction Between the Processors

 In Fig 3.1 the interaction and communication between the
processors are shown. In this multiprocessor architecture, all
the Compute processors in a Division are connected to the
Master processor. The Master processor of that Division is
again connected to other Master processors adjacent to it. The
Master processor of a Division controls and distribute

workloads to other Compute processors, and the Master
processors then communicate with each other to synchronize
the tasks they have performed. When a Master Processor is
assigned a work (process) to perform, it first breaks that work
into several small processes (can also be denoted as ‘threads’)
and assign these small processes to different Compute
processors of that Division along with the instructions of
fetching different memory addresses needed to perform the
small processes. The Master processor keeps track of each
task (thread) assigned to each Compute processor and the
memory addresses accessed by those Compute processors.
After the completion of each task (thread), each Compute
processor synchronize their tasks (threads) with the master
processor and free the memory addresses used for the
threads, which are again being tracked by the Master
processor. And then that Master processor synchronize the
process completed by it with the other Master processors of
other Divisions.

D. Operating System to this Architecture

 To utilize the computational capacities of the hardware of a
computer an Operating System is most important. A kernel is
a central component of an operating system. It acts as an
interface between the user applications and the hardware. In
most of the Computers in the world, either Micro Kernel or
Monolithic Kernel type of Operating Systems is used.
Monolithic Kernel can perform all the operations and consist
of only one layer, i.e. in PCs (personal Computers) monolithic
kernel is used to perform computation. And Micro Kernel can
perform mainly few operations along with one global
operation, i.e. it can perform one global process and other
small low-level processes. Micro kernels are mainly used in
Distributed Systems or Multiprocessor Systems.
 Since, in this Architecture multiple processors are
integrated in one single computer, so use of either of the two
Operating Systems only will not be feasible to perform the
processes. To solve this problem, a new concept of Operating
System is introduced along with this architecture.
 The new concept is that the system will have a basic
monolithic kernel. This monolithic kernel will again have
many small kernels (just like the micro kernels) inbuilt within
it. These micro kernels will perform small tasks along with a
global task and will be assigned to each Master processor.
Since micro kernel can perform only one global process at a
time, the Master processor can utilize this fact and perform
that one global process at a time along with small other
processes. This type of a Kernel is called a ‘Hybrid Kernel’.
3 List of Figures:

Fig 1.1: Figure shows 16 processors arranged in 4 x 4 matrix

pattern.

Fig 3.1: The Interaction between CPUs / Processors in ‘4 x 4’ Processor System

Fig 1.2: Division System in 4 x 4 Processor System

Fig 1.3: Division System with the concept of Master Processors and Compute Processors in (6 x 6) processor System

Fig 2.1: Relation between CPUs in terms of memory

N.B.: R1 – R8 are Register Memories of the CPU 1 – CPU 8

Fig. 2.2: Attachment of the M CPU (Master CPU) to the last Block in a division

N.B.: R1 – R8 are Register Memories of CPU 1 – CPU 8; R9 is the Register Memory of M CPU

4 Few More Details
A. Cooling of the System

Since multiple processors are integrated within a single

computer, it is obvious that the system will get very hot and
will generate a lot of heat. So to deal with this problem high
level of cooling system is needed to be installed within the
system. Both Air Cooling and Liquid Cooling systems can be
used to keep the computer cool and ventilate out the hot air.

B. Need of Multiple Processors in one System

In HPC (High Performance Computing) or in Super

Computers mainly the concept of Computer Clusters are used
to compute a task, where many computers are connected to
each other via a network. But there is an ever growing
demand of fast computers in todays world. If Computer
Clusters are used then the system become huge to maintain
and are also very costly economically. So if multiple (in order
of hundreds or thousands) processors are integrated in one
computer using nano-technology or recent technological
advancement then it will be easier to manufacture smaller (in
size) super computers and will be easier to maintain. If
multiple processors are used in one system then it will be
easier to compute and finish a task faster than it could be, and
to make the system easier to be maintained.

C. Use of A Single Computer Memory for 4 CPUs

In this Architecture four CPUs (processors) share a single

computer memory (RAM or Random Access Memory in
general). If the concept of Distributed Memory System or
Distributed Shared Memory System is used then the number
of processors will have equal number of computer memory,
and in this architecture it is of the order ‘n x n’ (n2) which is a
very large number. So the number of computer memories
used would have been n2 for ‘n x n’ number of processors
and it would have made the system pretty large to maintain.
To deal with this problem four CPUs share a single computer
memory and for a system with ‘n x n’ number of processors,
the number of computer memories needed in this architecture
is (abs[(n x n) / 4] * 4), where abs() denotes the absolute
value or the integer value of a number, for example:
abs(2.25)= 2.

D. Architecture Usage and Future Scope

Since, SD-MARC uses all the advantages of the different
types of multiprocessor architecture system, it is beneficial to
use and implement it, but still there’s a drawback of this
architecture. There’s no Operating System till date to support
this architecture. If this architecture is used in small systems
or very few number of processors are used to built a
multiprocessor system using this architecture, then there may
be lack of performance, as it will be in a system with
thousands of processors.

5 Conclusion
Since, this multiprocessor architecture, SD-MARC, is

used in a single computer system, it can be used in any field
of application, where intense computational power is needed
in one single system. For example, this architecture can be
used by hospitals to compute different problems and
chemical structures of medicines, can solve and diagnose
different diseases in very less amount of time. Even computer
enthusiast can use this architecture to build their own
Personal Super Computers and use those to compute time-
consuming problems in really less amount of time.

6 References

[1] W. Anderson, F. J. Sparacio, and R. M. Tomasulo, ‘‘The
IBM System/360 Model 91: Machine Philosophy and
Instruction-Handling,’’ IBM Journal of Research and
Development, Vol. 11, No. 1, pp. 8-24, January 1967.

[2] Proceedings. Supercomputing '88 (IEEE Cat.
No.88CH2617-9) ,November, 1988.

[3] Norman P. Jouppi, ‘‘The Nonuniform Distribution of
Instruction-Level and Machine Parallelism and Its Effect on
Performance,’’ IEEE Transactions on Computers, Vol. 38,
No. 12, pp. 1645-1658, December 1989.

[4] Youngjin Kwon, Changdae Kim, Seungryoul
Maeng, Jaehyuk Huh, “Virtualizing performance asymmetric
multi-core systems”, International Symposium on Computer
Architecture, pp. 45-56.

[5] Rajkumar Buyya (editor): High Performance Cluster
Computing: Architectures and Systems, Volume 1, ISBN 0-
13-013784-7, and Volume 2, ISBN 0-13-013785-5, Prentice
Hall, NJ, USA, 1999.

[6] Internet Source:
http://www.intel.com/pressroom/archive/reference/whitepaper_
QuickPath.pdf [last visited 10/03/2012]

[7] Internet Source:
http://users.ece.utexas.edu/~bevans/papers/2009/multicore/Mu
lticoreDSPsForIEEESPMFinal.pdf [last visited 11/03/2012]

