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Abstract

Low power mobile computing systems such as smartphones and wearables

have become an integral part of our daily lives and are used in various ways

to enhance our daily lives. Majority of modern mobile computing systems

are powered by multi-processor System-on-a-Chip (MPSoC), where multi-

ple processing elements are utilized on a single chip. Given the fact that

these devices are battery operated most of the times, thus, have limited power

supply and the key challenges include catering for performance while re-

ducing the power consumption. Moreover, the reliability in terms of lifes-

pan of these devices are also affected by the peak thermal behaviour on the

device, which retrospectively also make such devices vulnerable to temper-

ature side-channel attack. This thesis is concerned with performing Dy-

namic Voltage and Frequency Scaling (DVFS) on different processing ele-

ments such as CPU & GPU, and memory unit such as RAM to address the

aforementioned challenges. Firstly, we design a Computer Vision based ma-

chine learning technique to classify applications automatically into differ-

ent categories of workload such that DVFS could be performed on the CPU

to reduce the power consumption of the device while executing the applica-

tion. Secondly, we develop a reinforcement learning based agent to perform

DVFS on CPU and GPU while considering the user’s interaction with such

devices to optimize power consumption and thermal behaviour. Next, we

develop a heuristic based automated agent to perform DVFS on CPU, GPU

and RAM to optimize the same while executing an application. Finally, we

explored the affect of DVFS on CPUs leading to vulnerabilities against tem-

perature side-channel attack and hence, we also designed a methodology to

secure against such attack while improving the reliability in terms of lifespan

of such devices.
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Chapter 1

Introduction

Mobile computing systems [B’far, 2004, Satyanarayanan, 2010, Lukowicz et al., 2004,

Singh et al., 2020, Isuwa et al., 2022] such as smartphones and smart wearables utilizing

Multi-Processor System-on-a-Chip (MPSoC) have become an integral part of our daily

lives. Given the fact that these devices are easily accessible to us and are mostly battery

operated, the key objectives are to optimize performance, power consumption, thermal

behaviour and security of such devices. One of the most popular ways to achieve these

objectives is to perform Dynamic Voltage and Frequency Scaling (DVFS) on different

processing elements such as CPU, GPU (Graphical Processing Unit) and RAM (Random

Access Memory). In this chapter, we explore the concept of DVFS and its operational

importance in MPSoCs. This chapter offers reflections on some of the key challenges

of operating an MPSoC. The major contributions made by this thesis in an attempt to

address these challenges are also highlighted. A snapshot of each chapter is also pre-

sented here to illustrate the structure of the thesis. Finally, the publications that were

made during the period of this research are listed at the end of the chapter.

1.1 Motivation

Modern smartphones such as Samsung Galaxy S20, Note20, iPhone and wearable de-

vices such as Samsung Galaxy Watch and Apple Watch devices have become an integral

part of most people’s daily lives. We heavily rely on these battery operated smart devices

to perform a plethora of day-to-day tasks such as controlling our smart home [Jiang

et al., 2004, Wang et al., 2013, Kumar and Lee, 2014], watching our favourite TV series,

playing your favourite games and keeping track of our social and active lives. With an

increase in the performance demand of embedded/mobile applications, which cannot

be satisfied by simply increasing the operating frequency of a single-core processor or

by customizing the single processor core, we could notice the rise of Multi-Processor
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System-on-a-chip [Jerraya and Wolf, 2004, Wolf et al., 2008, Singh et al., 2013], where

multiple processing cores are utilized on a single chip system.

Moreover, most of these modern battery operated smartphones and wearables now

come equipped with heterogeneous Multi-Processor System-on-a-Chip (MPSoC) [Ku-

mar et al., 2005, Dey et al., 2019d], which utilizes different types of processing cores

such as CPU, GPU (Graphical Processing Unit), to cater for the performance and power

consumption requirement of executing different types of applications on such devices.

According to several studies [Singh et al., 2013, Reddy et al., 2017, Dey et al., 2019c],

especially by Singh et al. [Singh et al., 2013], applications, consisting of several work-

loads/tasks, could be classified into three different types: compute intensive, memory

intensive, and mixed (compute and memory intensive), based on the number of instruc-

tions per cycle or memory accesses. To execute these different types of workloads het-

erogeneous MPSoCs come equipped with different types of processing elements such as

CPU & GPU, and memory units such as RAM (Random Access Memory) [Patterson and

Hennessy, 2016].

Given the fact that these embedded/mobile devices operate on battery, one of the

key challenges of operating such devices is reducing the power consumption of the de-

vice so that these devices could operate longer on battery without the need of charging.

According to [Muthukaruppan et al., 2013], there are five popular methods leading to the

reduction of power consumption in mobile platforms utilizing MPSoCs, which includes:

1. Dynamic Power Management (DPM) allows idle processing elements or other idle

components of the system to be suspended if required in order to reduce power

consumption [Gupta et al., 2017].

2. Dynamic Voltage Frequency Scaling (DVFS) allows processing elements to operate

at variable voltage and frequency (V-F) levels [Shin et al., 2000,Khriji et al., 2022] to

reduce power consumption. DVFS manages power consumption of the processing

elements by balancing the trade-off between performance and power consump-

tion. The main ideology behind DVFS is to vary the operating voltage (V) and

frequency (F) of a processing element dynamically, based on the current workload

and performance requirements. By adjusting the voltage and frequency, DVFS can

achieve optimal performance while minimizing power consumption. More details

on DVFS and power consumption are provided in section 2.1 of Chapter 2.

3. Customization of the processing elements to match the processing needed of a

workload on an MPSoC [Lin and Fei, 2010].
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4. Customizing cache based memory access [Gordon-Ross et al., 2004].

5. Mapping tasks of an application to the processing elements so that workload could

be balanced across all processing elements in an MPSoC. This improves utilization

of the processing elements effectively and reduces power consumption on the de-

vice [Benoit and Robert, 2008].

At the operating system level, we could only use DPM and DVFS based methodolo-

gies for power consumption reduction, which could further add to the resource map-

ping and allocation techniques. Thus, software based profiling systems mostly utilize

these two methodologies to profile power consumption for a set of applications on het-

erogeneous MPSoCs. Moreover, out of the aforementioned methodologies, DVFS is a

very popular mechanism used to reduce the power consumption of the MPSoC by the

means of reducing the dynamic power consumption (P ∝V 2 f ) by reducing the operat-

ing frequency of the processing elements. Since, the dynamic power consumption in an

MPSoC is proportional to the operating frequency of the processing elements, as shown

in the equation, executing the application on a reduced operating frequency leads to a

reduced power consumption of the device.

In majority of the modern heterogeneous MPSoCs, CPU, GPU and RAM support

DVFS, where each of these components affects the total power consumption of the de-

vice differently for different types of applications. For example, when we observed the

power consumption due to the effects of DVFS in CPU, GPU and RAM (denoted as mem-

ory only) in Odroid XU4 [odr, b], utilizing Exynos 5422 MPSoC [exy, a], while idle (when

no other application is executing other than background processes of the OS), we ob-

served that big CPUs, LITTLE CPUs, GPU and memory consumes 34%, 8%, 9% and 3%

of the average power consumption respectively of the device on an average (as shown

in Fig. 1.1.(a)). Here, the Exynos 5422 MPSoC utilizes ARM’s big.LITTLE processor tech-

nology [Kim et al., 2014], where two different types of CPUs (big and LITTLE) are utilized

to cater for performance and power consumption requirements of executing applica-

tions. In Fig. 1.1.(a), the average power consumed by the big CPUs, LITTLE CPUs, GPUs,

Memory and rest of the components such as the fan (active cooling), hardware storage

& on-chip communication network of the Exynos 5422 MPSoC while idle is 3.53 watts

(W).

In order to observe the effect of DVFS of each of the major components (big CPUs,

LITTLE CPUs, GPU and memory) of the MPSoC the power consumption was recorded

while operating each of these components in their maximum operating frequency and

minimum operating frequency consecutively to measure the percentage of total power
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consumption that is attributed to the maximum and minimum frequency. Fig. 1.1.(b)

illustrates the percentage of total power consumption of big CPUs, LITTLE CPUs, GPU,

memory and rest of the components in the Exynos 5422 MPSoC while executing Stream-

cluster benchmark (in native mode) from the PARSEC benchmark suite [Bienia, 2011a].

The average power consumed by the big CPUs, LITTLE CPUs, GPUs, Memory and rest of

the components of the Exynos 5422 MPSoC while executing Streamcluster benchmark is

10.11 watts (W). Streamcluster benchmark was chosen because it reflects a mixed work-

load (both compute intensive and memory intensive) [Dey et al., 2019c] to mimic the

workload of most of the popular applications used by the users. From Fig. 1.1 one in-

teresting observation is that in a mixed workload application the big CPU, LITTLE CPU,

GPU and memory can contribute to 68%, 4%, 7% and 19% of the average power con-

sumption respectively, which constitutes a majority of the power consumed on the plat-

form, and hence, DVFS in CPU, GPU and memory plays an important role towards the

total power consumption of the device. Note that in Fig. 1.1.(a), the rest of the compo-

nents such as the fan (active cooling), hardware storage & on-chip communication net-

work of the Exynos 5422 MPSoC separate to the big CPU, LITTLE CPU, GPU and memory

while idle might be consuming almost 46% of the average power consumed but in real-

ity the rest of the components are consuming only 1.62 watts (W) as the average power

consumption of the Exynos 5422 MPSoC while idle is 3.53 watts.

(a) Idle (b) Executing streamcluster

Figure 1.1: Percentage of average power consumed by the big CPUs, LITTLE CPUs, GPUs,
Memory and rest of the components such as the fan (active cooling), hardware storage
& on-chip communication network of the Exynos 5422 MPSoC while idle vs executing
streamcluster benchmark

On the other hand, power consumption in these mobile platforms utilizing MPSoC

has a direct correlation with the heat dissipation in such devices [DeVogeleer et al.,
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2014, De Vogeleer et al., ]. Therefore, increased power consumption in these MPSoCs

leads to an increased heat dissipation, which retrospectively increases the peak tem-

perature of the processing elements. Moreover, according to studies [Chantem et al.,

2010,Coskun et al., 2007,Zhou et al., 2015,Singh et al., 2020] an increase in the operating

temperature by 10-15° centigrade in the MPSoC could reduce the lifespan of the MPSoC

by 2×. Additionally, an increase in peak temperature of the processing elements such

as CPU in the MPSoC could also expose vulnerabilities related to thermal side-channel

attack [Hutter and Schmidt, 2013, Masti et al., 2015, Bartolini et al., 2016], compromis-

ing sensitive data such as password while processing information on the DVFS enabled

CPUs. Therefore, given these pieces of evidence, it is crucial to perform DVFS in mobile

MPSoCs such that the performance requirement of the executing applications could be

achieved while reducing power consumption, peak temperature of the device and im-

prove security against thermal side-channel attack.

That said, the majority of traditional approaches to perform DVFS include dynamic

power or thermal management or both [Singh et al., 2020]. Dynamic power and thermal

management could be of two types, Proactive and Reactive. In Proactive, the method-

ologies try to pro-actively determine the future state(s) of the system and take actions to

optimize either power consumption or thermal behaviour or both, whereas, in Reactive,

the methodologies are reactive in nature and only take actions in order to perform op-

timizations when a certain state is met. For proactive management, the state could be

future temperature by using a temperature estimation model or future workload by us-

ing workload estimation model, and actions could be resource selection and/or operat-

ing voltage (V) or operating frequency (F) control. In comparison, the state for reactive

management could be the current workload or temperature. Whatsoever, these states

are typically determined with the help of hardware performance monitoring counters

providing data about metrics such as power consumption and performance. Moreover,

these performance counters are special registers in the hardware that hold the value for

the respective state(s) and are usually manufacturing vendor locked to be accessible.

This makes it particularly difficult to perform DVFS for different types of applications

(workloads) in the software layers of the OS if access to these performance counters is

not accessible. Additionally, incorporating these hardware performance counters are

expensive and increases the size of the MPSoC, especially in consumer devices such as

smartphones. Therefore, this calls for an approach capable of performing DVFS based

on the type of application (workload) without the need to access such performance

counters.
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Moreover, when it comes to consumer devices such as smartphones, user’s satis-

faction in terms of Quality of Service (QoS) plays an important role [Pathania et al.,

2014, Sahin and Coskun, 2015, Shafik et al., 2016, Peters et al., 2016, Bhat et al., 2018]. At

the same time on such devices, most of the existing methodologies related to optimizing

performance [Pathania et al., 2015, Gupta et al., 2017] only consider performance and

power consumption together in a metric such as Performance Per Watt (PPW) while not

considering temperature into such metrics. This calls for an approach which is capable

of performing DVFS while taking QoS, performance, power consumption and thermal

behaviour into consideration. Additionally, all the published studies and methodolo-

gies only perform DVFS on CPU or GPU or memory or a combination of these but not

on all of them together. Therefore, it is crucial to be able to perform DVFS on all these

components of the MPSoC to achieve better performance, power and temperature op-

timization.

On the other hand, performing DVFS on processing cores leads to heat dissipation

and propagation on the core, which can be observed over time in order to deduce se-

curity flaws. This type of an attack is called temperature based side-channel attack

and could be directly correlated to DVFS since increased operating frequency on a pro-

cessing core leads to increased heat dissipation as pointed out in [Hutter and Schmidt,

2013, Masti et al., 2015, Bartolini et al., 2016]. Henceforth, devising DVFS approaches to

secure against such attack is very important while catering for the performance require-

ments of the executing application on the MPSoC.

To address the aforementioned shortcomings we need unorthodox approaches to

perform DVFS in MPSoCs and this thesis introduces such approaches. In the follow-

ing subsection, we will explore some of the key challenges in MPSoCs that this thesis is

trying to address.

1.2 Key Challenges

Reduced power consumption. Most of the smartphones and smart wearables utiliz-

ing MPSoCs operate by stand-alone power supply like battery and henceforth, this calls

for power optimization on such devices in order to increase the operational time of the

systems and reduce the power consumption costs in the process.

Reduced peak temperature. An increase in temperature of the processing elements in

the MPSoC in smartphones and smart wearables could lead to the reduction of lifespan

of the device. Moreover, an increase in the peak temperature could also increase the

overall thermal behaviour of the device itself and hence, contributing to discomfort of
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the user. Therefore, this calls for optimization of peak temperature of the processing

elements of the MPSoC.

Improved security against thermal side-channel attack. Compute intensive tasks such

as encryption and decryption on the processing elements in the MPSoC could lead to

surge in the peak temperature, which exposes vulnerability to temperature based side-

channel attacks. Such an attack in the smartphones and smart wearables could be ex-

ploited by Malwares or hackers and henceforth, this calls for an approach to secure such

devices from thermal side-channel attack.

1.3 Contributions

To address the aforementioned key challenges, the main contributions of this thesis are

fourfold, which have been made during the course of this research, and are summarized

as follows:

1. Given the fact that smartphone users are ever increasing along with an increased

availability of mobile applications [Cruz et al., 2019], different types of applica-

tions demand different performance and power consumption requirements. We

developed the first ever methodology to classify applications automatically into

the three categories: compute intensive, memory intensive and mixed workload;

such that DVFS could be performed on the CPU to reduce the power consumption

of the device while executing the application.

2. Smartphones and smart wearables come equipped with touch enabled display, on

which the user interacts to perform a task. Throughout the day, the user’s inter-

action behaviour with the application on these devices through touch interaction

changes over time, and henceforth, DVFS needs to be performed to consider the

user’s interaction with the applications. We developed the first approach to per-

form DVFS on CPU and GPU while considering the user’s mobile usage behaviour,

performance of the executing application, power consumption and temperature

of the device. We also introduce a metric based on performance, power consump-

tion and thermal behaviour as well.

3. Although for most applications, which are compute intensive and mixed work-

load, performing DVFS on CPU and GPU could lead to massive reduction in power

consumption and peak temperature of the device, however, for many applica-

tions, which are more memory intensive, performing DVFS on RAM along with
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DVFS on CPU and GPU could lead to more power saving and reduction in thermal

behaviour. To address this, we developed the first approach to perform DVFS on

CPU, GPU and RAM.

4. Temperature based side-channel attack could be a real threat on smartphones and

smart wearables. We developed the first machine learning based mechanism to

perform temperature side-channel attack in a real smartphone platform and then

developed an approach to secure such devices from these types of attacks. We

also proposed a metric to evaluate security of such devices against temperature

side-channel attacks.

1.4 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2 (Background): We review the existing relevant literature that serves as the

background for the research conducted in this thesis. We start by examining the role

of DVFS in the reduction of power consumption and peak temperature on mobile plat-

forms employing MPSoC and explore the related proposed approaches in this area.

Chapter 3 (Performing DVFS on CPU): We introduce an automated technique to clas-

sify applications and then perform DVFS on CPU to cater for the performance require-

ment of the executing application along with reduced power consumption.

Chapter 4 (Performing DVFS on CPU and GPU): We introduce a software agent that

performs DVFS on CPU and GPU while taking the user’s interaction with the touch en-

abled mobile device into consideration such that power consumption and peak temper-

ature of the device could be reduced while catering for performance.

Chapter 5 (Performing DVFS on CPU, GPU and RAM): We introduce a software agent

that performs DVFS on CPU, GPU and RAM to cater for the performance requirement of

the executing application while consuming the least power and reducing peak temper-

ature in the process.

Chatper 6 (DVFS & Temperature Side-Channel Attack): We introduce a novel machine

learning approach to perform temperature based side-channel attack in real mobile

platforms utilizing MPSoC to explore the threat of such attacks. We then introduce a

mechanism to secure such devices against temperature based side-channel attacks us-

ing DVFS approach.

Chatper 7 (Conclusion): We conclude this work in this chapter, providing a summary of

the key contributions made throughout this thesis. Additionally, potential future direc-

tions as an extension are also provided.
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Chapter 2

Background

Multi-core embedded mobile platforms such as smartphones and smart wearables are

on the rise as they enable efficient parallel processing to meet ever-increasing perfor-

mance requirements. However, since these platforms need to cater for increasingly

dynamic applications (workloads), efficient dynamic resource management is desired

mainly to enhance the power and thermal efficiency for better user experience with in-

creased operational time and lifetime of these mobile devices. Moreover security, espe-

cially against temperature side-channel attack, is one of the key requirements in such

platforms. In this chapter, we first discuss some of the key concepts related to dynamic

power and thermal management approaches along with the importance of security ap-

proaches against temperature side-channel attack, and then we explore the related pub-

lished works for multi-core mobile platforms.

2.1 Introduction

Multi-Processor System-on-a-Chip (MPSoC) consists of different components such as

microprocessors, memory chips, etc. developed through CMOS (Complementary Metal

Oxide Semiconductor) technology. The total power consumption (Ptot al ) in a CMOS

integrated circuit is dependent on two components, as shown in Eq. 2.3 [Basireddy,

2019]:

• Static power consumption (Pst ati c ), which is the power consumed when the tran-

sistors are not in the process of switching (activity). It is represented by Eq. 2.1,

where V is the operating voltage and Ileakag e is the leakage current [Jan et al.,

2003].

• Dynamic power consumption (Pd ynami c ), which is the sum of transient power

consumption and capacitive load power. Transient power is the power consumed
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when the circuit changes logic states such as 0 bit to 1 bit or vice-versa, whereas

the capacitive load power is the power used to charge the load capacitance. Dy-

namic power is represented by Eq. 2.2, where α is the activity factor 1, C is the ca-

pacitance, V is the operating voltage, and F is the operating frequency [Jan et al.,

2003].

Pst ati c =V × Ileakag e (2.1)

Pd ynami c =α × C × V 2 × F (2.2)

Ptot al = Pst ati c +Pd ynami c (2.3)

Therefore, when an application is executing on the MPSoC, the total energy (Etot al )

consumption in the system is represented by the product of total power consumption

and the execution time (Tapp ) of the application, as shown in the following equation.

Etot al = Ptot al ×Tapp (2.4)

Moreover, as mentioned in section 1.1, DVFS performs power management of the

processing elements by varying the operating voltage (V ) and frequency (F ) of the re-

spective processing elements dynamically based on the current workload and perfor-

mance requirements, the total power consumption (Ptot al ) is also affected by the the

operating voltage (V ) and frequency (F ). As shown in the above equations 2.1, 2.2 and

2.3, dynamic power (Pd ynami c ) is proportional to the square of the voltage and directly

proportional to the frequency, while static power (Pst ati c ) is directly proportional to

the voltage. Therefore, scaling both voltage and frequency concurrently by perform-

ing DVFS provides a more effective way to reduce power consumption. That said, we

need to keep in mind that in most of the modern MPSoCs such as Exynos 5422 [Prakash

et al., 2015], the operating voltage and frequency come paired together for each type of

processing elements such as CPUs & GPUs, thus, by scaling the operating frequency the

operating voltage is automatically scaled alongside.

Modern embedded mobile platforms ranging from smartphones to wearable de-

vices employ heterogeneous Multi-Processor Systems-on-Chips (MPSoCs), which uti-

lizes several types of processing cores such as ARM’s big.LITTLE with DVFS capabilities

1The activity factor (α) is a dimensionless quantity, ranging from 0 to 1, that represents the average
switching activity of a digital circuit or processor. It is used to capture the dynamic behavior of the circuit
and estimate the dynamic power consumption.
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are available within a single chip, to deliver performance as well as power efficient com-

puting.

Previously simply increasing the operating frequency of a single-core processor was

able to cater for performance criteria of mobile applications, however, with time we

could notice a paradigm shift to the adoption of multi-core systems in mobile devices to

satisfy the needs of more complex applications. Additionally, simply increasing the op-

erating frequency of single core leads to high power consumption and heat dissipation.

In order to overcome the challenges associated with power consumption, heat dis-

sipation and performance requirement of executing applications on mobile platforms,

chip manufactures are integrating multiple processing cores (processing elements) op-

erating at low frequencies, where the cores can cohesively communicate with each other

[Singh et al., 2017a]. Over the decades, thanks to Moore’s Law, now we cannot just fit

many cores on a single chip but also cores of different processing capabilities onto the

same chip to better fit our needs. The hardware (H/W) layer in Figure 2.1 shows an ex-

ample chip containing many cores (resources) of different capabilities (colors). Such

systems with multiple processing cores enable us to leverage the increased parallelism

of the platform by partitioning applications (shown in the Appl. layer in Figure 2.1) into

many small tasks and assigning the tasks to different cores (by H/W resource selection

in Figure 2.1) in order to perform parallel executions towards satisfying the increased

performance requirements, power consumption and heat dissipation [Hanumaiah and

Vrudhula, 2012].

In these systems, the partitioning of applications is referred to as functional par-

titioning [Singh et al., 2017a]. This kind of procedure requires in-depth application

knowledge and involves finding the tasks, adding synchronization and inter-task com-

munication in the tasks, management of the memory hierarchy communication and

checking of the parallelized code (tasks) to ensure for correct functionality. When het-

erogeneous multi-core system is in place, a task binding process, which specifies the

types of cores on which the tasks can be allocated along with the allocation cost, is re-

quired [Smit et al., 2005]. In order to compute the allocation cost of the task, the binding

process analyzes the implementation cost such as performance, power consumption

and resource utilization of each task on supported heterogeneous cores such as general

purpose processor (GPP), digital signal processor (DSP), graphics processing unit (GPU)

and coarse grain re-configurable hardware. At the moment, the most popular mobile

platforms such as Samsung Exynos 5410, Exynos 5422 and Qualcomm’s Snapdragon MP-

SoCs host ARM’s big and LITTLE GPPs along with other dedicated GPUs and DSPs [Dey

et al., 2019d, Dey et al., 2019b, Pathania et al., 2014, Tan et al., 2018]. Although ARM’s

14



H/ W 
Resour ce 1

H
/

W

H/ W 
Resour ce 2

H/ W 
Resour ce 3

H/ W 
Resour ce 4 . . . H/ W 

Resour ce n
V- F

Lever s

Run- Ti me Manager  ( RTM)           
( E. g.  Power  & Temper at ur e)

Cur r ent  
Temper at ur e

Wor kl oad 
Est i mat i on 

Model

Temper at ur e 
Est i mat i on Model

. . .

O
S

/
R

T
M

. . .

A
p

p
s

.

H/ W Resour ce Sel ect i on 
& V- F Cont r ol

Ener gy/ Per f .  St at i st i cs 
( E. g.  count er s)

Figure 2.1: Resource management [Singh et al., 2020]

big cores are sometimes too powerful for some types of applications and end up wast-

ing a lot of power while executing them, on the other hand ARM’s LITTLE cores could

be less powerful to run the similar applications. In order to overcome such issues with

processing capabilities, future trend in heterogeneous multi-core architecture is head-

ing towards having more number of cores with variable processing capacities, which is

not just limited to just two types such of ARM’s big.LITTLE [Lin et al., 2016,Rupley et al.,

2016], as we can already observe in Exynos 9825 (powering Samsung Galaxy 10 & Note 10

devices) [exy, c] and Exynos 990 (powering Samsung Galaxy 20 & Note 20 devices) [exy,

d] MPSoCs.

Power efficient execution of applications on multi-processor systems is desired in

order to improve the operation time of battery-powered systems. This requires devel-

opment of efficient run-time management (RTM) approaches, as shown in the OS/RTM

layer of Figure 2.1. For decades several research and implementation works have fo-

cused on optimizing power at circuit, architecture and system levels. On the other hand,

on systems utilizing MPSoCs if proper power consumption control measures are not

taken then it could lead to heat generation in the system. The availability of multiple

PEs on the system in comparison with uniprocessors can lead to more nonuniformity
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of heat generation & dissipation, leading to spatial temperature gradients (STGs) across

the chip. Additionally, the variety of the workloads, which could be processed at the

same time, may cause large temporal heat generation/dissipation leading to temporal

thermal gradients (TTGs) at a single point on the chip. In the meantime, STGs, TTGs and

thermal cycles lead to reduced performance and reliability of the system over the period

of time [Iranfar et al., 2018]. If there is an increase of 10 °C to 20 °C for metallic structures

then the lifetime reliability may decrease up to 16 times, thus, optimizing thermal be-

haviour of the mobile platform is very important for such devices. Not to mention, STG

and TTG on the PEs in the chip could also expose vulnerabilities related to temperature

(thermal) side-channel attacks [Hutter and Schmidt, 2013, Masti et al., 2015, Bartolini

et al., 2016].

In this chapter, we explore the approaches available for dynamically optimizing power

consumption and thermal behaviour on multi-core mobile platforms. First, we observe

some of the recent trends in power and thermal management in MPSoCs. Also, given the

fact that power consumption and heat dissipation on MPSoC devices could also lead to

temperature side-channel attacks, we also explore studies related to that topic. We have

segregated the surveyed methodologies into three categories: Dynamic Power Manage-

ment, Dynamic Thermal Management, & Dynamic Power and Thermal Management;

where each of the categories has two sub-categories: Proactive, where the methodolo-

gies are trying to pro-actively determine the future state and take actions to optimize

either power consumption or thermal behaviour or both; & Reactive, where the method-

ologies are reactive in nature and only take actions to optimize either power consump-

tion or thermal behaviour or both when a certain state is reached. Keep in mind, though

power and energy consumption are distinct from each other, power consumption of ex-

ecuting apps are evaluated over the execution time of such apps (see Eq. 2.4) and hence,

we use the term “energy" in some context when we observe the power consumption over

the execution time period.

For proactive management, the state could be future temperature by using a tem-

perature estimation model or future workload by using workload estimation mode and

actions could be resource selection and/or voltage-frequency (V-F) control, as shown in

Figure 2.1. In contrast, the state for reactive management could be current workload or

temperature, as shown in Figure 2.1. The states are typically determined with the help

of performance monitoring counters providing statistics about metrics such as power

and performance. After we have explored the approaches on dynamically optimizing

power consumption and thermal behaviour, we explore approaches related to temper-

ature side-channel attacks.
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Chapter organization: For ease of navigation within this chapter, the rest of the chapter

is organized as follows. Recent emerging technologies in power and thermal manage-

ment in MPSoCs are discussed in Sec. 2.2. Existing work on Dynamic Power Manage-

ment (discussed in Sec. 2.3), Dynamic Thermal Management (discussed in Sec. 2.4)

and Dynamic Power and Thermal Management (discussed in Sec. 2.5) are segregated

into Proactive and Reactive approaches. In Sec. 2.6 we explore existing work on thermal

side-channel attack, and finally, the chapter is concluded in Sec. 2.7.

2.2 Recent Emerging Technologies in Power and Thermal
Management in MPSoC

Before we explore some of the existing works in power and thermal management, let us

explore some of the emerging technologies that are being used for power and thermal

management in MPSoCs. In this section, we explore some of these recent emerging

technologies as they evolve. The rationale for discussing these emerging technologies in

this section is to establish their relevance as they will be subsequently employed within

the research presented throughout this thesis.

2.2.1 Heterogeneity in Processing Cores in the Machine Learning Era

As already mentioned most of the modern MPSoCs come equipped with heterogeneous

processing elements such as big CPUs, LITTLE, CPUs, GPUs and DSPs [Dey et al., 2019d,

Dey et al., 2019b, Pathania et al., 2014, Tan et al., 2018], however, with the evolution and

popularity of machine learning algorithms in recent times we can also see emergence

of neural processing units (NPUs), which are specifically integrated into the chip cir-

cuit that implements all the necessary control and arithmetic logic to execute machine

learning algorithms [Patterson et al., 2012, Bouvier et al., 2021]. With rise in complexity

in homogeneity in the processing elements in the MPSoC, several methodologies have

been proposed to optimize either performance, power consumption, temperature and

reliability of the MPSoC or a multiple of these objectives together.

2.2.2 Convolutional Neural Networks and Deep Learning

A Deep Learning (DL) model [Krizhevsky et al., 2017] consists of an input layer, several

intermediate (hidden) layers stacked on top of each other and an output layer. Fig. 2.2

shows a representative diagram of DL model. In the input layer, which is the first layer

of the model, the raw values of data features are fed into it. In each of the hidden layers a

17



mathematical operation called convolution is applied to extract specific features, which

is then utilized to predict the label of the raw data in the last (output) layer of the DL net-

work. Most of the time, if a model utilizes an input layer, a hidden layer and an output

layer then the model is denoted as Convolutional Neural Network (CNN) model or sim-

ply, CovNet. If such a model uses a lot of stacked hidden layers only then it is denoted as

a DL model or Deep Neural Networks (DNN).

Input #1

Input #2

Input #3

Input 
layer L1

Hidden 
layer L2

Hidden 
layer L3

Output 
layer L4

Figure 2.2: Representative diagram of Deep Learning model

2.2.3 Reinforcement Learning

Reinforcement learning (RL) [Sutton and Barto, 2018] is a type of machine learning al-

gorithm where an intelligent agent, which is a computing system that perceives its en-

vironment to take actions autonomously in order to achieve cumulative rewards based

on the knowledge gathered from the environment. Fig. 2.3 shows a representative dia-

gram of an intelligent agent. Here, reward could be optimizing performance or power

consumption or thermal efficiency or combination of these together. Several studies

[Shafik et al., 2016, Maurer et al., 2020, Yu et al., 2020] on utilizing reinforcement learn-

ing for computing resource management have been proposed. One of the biggest ad-

vantage of using RL for resource management is that the system is capable of learning

autonomously how to manage the resources online dynamically.
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Figure 2.3: Representative diagram of intelligent agent

2.3 Dynamic Power Management

In this section, we explore the dynamic power management approaches that are cur-

rently available in MPSoCs. The studies mentioned in this section only focus on dy-

namic power management without explicitly considering dynamic thermal manage-

ment on the MPSoC.

To improve power consumption and/or to meet performance constraint in multi-

core mobile platforms, various approaches for DVFS and/or mapping have been pro-

posed using offline, online or hybrid (online optimization facilitated by offline analy-

sis results) optimization for resource management [Goraczko et al., 2008, Singh et al.,

2017a, Singh et al., 2017b, Basireddy et al., 2018, Reddy et al., 2017, Quan and Pimentel,

2015, Gupta et al., 2017, Shafik et al., 2016, Cochran et al., 2011, Van Craeynest et al.,

2012, Aalsaud et al., 2016b, Sozzo et al., 2016, Donyanavard et al., 2016, Petrucci et al.,

2015, Schranzhofer et al., 2010, Hölzenspies et al., 2008, Quan and Pimentel, 2013, Sta-

moulis and Marculescu, 2016, Mandal et al., 2019]. Depending on the control mecha-

nism, runtime power management approaches can be further classified into two cat-

egories: proactive [Shafik et al., 2016, Hölzenspies et al., 2008, Gupta et al., 2017] and

reactive [Goraczko et al., 2008,Schranzhofer et al., 2010,Quan and Pimentel, 2013,Weis-

sel and Bellosa, 2002, Singleton et al., 2005, Mandal et al., 2019].

2.3.1 Proactive Approaches

To adapt to dynamic application workloads efficiently, proactive control-based approaches

have also been investigated [Shafik et al., 2016, Hölzenspies et al., 2008, Gupta et al.,
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2017]. An online reinforcement learning based proactive DVFS approach targeting frame-

based applications is presented to improve energy efficiency [Shafik et al., 2016]. More

about the process of reinforcement learning is mentioned earlier in Sec. 2.2.3. The ef-

ficacy of [Shafik et al., 2016] is proved on DM3730 SoC. In [Hölzenspies et al., 2008], an

online spatial mapping for streaming applications is presented for a multi-core system

and the experiments were performed on hypothetical MPSoC with MONTIUMS with 2

ARM processors.

The study in [Quan and Pimentel, 2013] proposed scenario-based hybrid mapping

approaches targeting homogeneous multi-core platforms in which mappings derived

from design-time DSE are stored for runtime mapping decisions. Above discussed ap-

proaches target only homogeneous multi-cores and thus may not be efficient for het-

erogeneous multi-cores. Similar to [Van Craeynest et al., 2012], some works have used

workload memory-intensity as an indicator to guide task mapping [Petrucci et al., 2015].

[Petrucci et al., 2015] was evaluated on 64bit x86 quad-core processors with varying

operating frequencies. A domain-specific hybrid task mapping is presented in [Quan

and Pimentel, 2015], which depends heavily on offline results. [Quan and Pimentel,

2015] is implemented on Sesame system level simulator. However, approaches pre-

sented in [Van Craeynest et al., 2012, Quan and Pimentel, 2015] do not consider DVFS,

thereby missing on power saving opportunities. On the other hand, techniques pro-

posed in [Sozzo et al., 2016, Donyanavard et al., 2016, Aalsaud et al., 2016b, Gupta et al.,

2017, Reddy et al., 2017] use DVFS, but they have several shortcomings. In [Sozzo et al.,

2016], the design space is explored for a single application and applying it to concurrent

execution of applications would be inefficient due to huge design space. Donyanavard

et al. [Donyanavard et al., 2016] take applications with only one thread, so only one type

of core for each application is used. In et al. [Aalsaud et al., 2016b], the study considered

concurrent execution and mapping of application threads onto more than one type of

cores. However, it requires extensive offline and/or online exploration for building re-

gression models for performance and power consumption for all possible mappings and

DVFS levels, which is non-scalable. Further, it does not apply online periodic adjust-

ment of DVFS level, which is essential for adapting to workload variations and achieving

better power savings.

Approaches presented in [Reddy et al., 2017, Gupta et al., 2017] address the above

problem, but they also depend on extensive offline results, and in particular, [Gupta

et al., 2017] requires application instrumentation to guide the runtime selection. In

[Basireddy et al., 2019], the dependency on the application-dependent offline results

is removed by online mapping and adapting to application arrival/completion times.
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The works presented in [Reddy et al., 2017,Gupta et al., 2017,Basireddy et al., 2019] were

implemented on Samsung Exynos 5422 MPSoC.

2.3.2 Reactive Approaches

Reactive approaches that use offline-optimization require extensive design space ex-

ploration of the underlying hardware and application(s). The techniques proposed in

[Goraczko et al., 2008, Schranzhofer et al., 2010, Quan and Pimentel, 2013] are used for

DVFS and/or task mapping. In [Goraczko et al., 2008], a resource model is presented to

improve the accuracy of existing models considering the time and energy costs of run-

time mode switching. Given an application, the software partitioning problem (assign

parts of an application to each processor to achieve maximum system lifetime without

sacrificing application performance) has been formulated as an Integer Linear Program-

ming (ILP) problem. The approach presented in [Schranzhofer et al., 2010] generates

multiple mappings for each application offering a trade-off between resource require-

ments and throughput. Evidently, these techniques consume more time, and cannot

cope with dynamic application behavior, especially when multiple applications are run

concurrently.

To handle dynamic application workloads, pure online optimization-based approaches,

performing all processing at runtime, have also been investigated [Weissel and Bellosa,

2002, Singleton et al., 2005]. In [Weissel and Bellosa, 2002], the online algorithm utilizes

hardware performance monitoring counters (PMCs) to achieve energy savings without

recompiling the applications. In [Singleton et al., 2005], the study presented an accu-

rate run-time prediction of execution time and a corresponding DVFS technique based

on memory resource utilization. Online approaches do well for even unknown appli-

cations, but may result in inefficient results as optimization decisions need to be taken

quickly without prior knowledge about the application [Quan and Pimentel, 2015]. This

can be overcome by using hybrid approaches, which usually provide better performance

results than pure online optimization as they take advantage from both offline and on-

line computations.

Among hybrid approaches, the reactive control mechanism is used in [Cochran et al.,

2011]. In [Cochran et al., 2011], thread-to-core mapping and DVFS is performed based

on power constraint. In [Sasaki et al., 2013], first thread-to-core mapping is obtained

based on utilization and then DVFS is applied depending upon the surplus power. How-

ever, [Sasaki et al., 2013] is not implemented on mobile platform and was validated on a

64-core platform. Due to better power-performance trade-offs, heterogeneous architec-

tures become prevalent across different computing domains [Van Craeynest et al., 2012,
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Aalsaud et al., 2016b,Sozzo et al., 2016,Donyanavard et al., 2016]. These approaches usu-

ally consider multi-threaded application to exploit the available hardware parallelism

efficiently. For multi-threaded applications, most approaches tend to allocate whole

application onto only one type of processing core(s) [Van Craeynest et al., 2012, Sozzo

et al., 2016, Donyanavard et al., 2016]. Although it simplifies the mapping problem but

cannot benefit from the power-performance trade-offs offered by simultaneously map-

ping application threads onto multiple types of cores. In [Van Craeynest et al., 2012], a

performance impact estimation technique is discussed to predict which application-to-

core mapping is likely to provide the best performance to map the application onto the

most appropriate core type. This work was evaluated on CMP$im simulator with 4 big

and 4 small processors. In [Mandal et al., 2019], the study proposed a practical imitation

learning (IL) framework for dynamically controlling the type (Big/Little), number, and

the frequencies of active cores in heterogeneous multi-core mobile processors. In this

work, linear regression (LR) and regression tree (RT) algorithms are employed to gen-

erate policies with minimal storage compared to techniques based on reinforcement

learning (RL), and also has minimal runtime decision-making overheads. This work was

implemented on Samsung Exynos 5422 MPSoC.

2.4 Dynamic Thermal Management

In this section, we explore the dynamic thermal management approaches that are cur-

rently available in MPSoCs. The studies mentioned in this section only focus on dy-

namic thermal management without explicitly considering dynamic power manage-

ment.

Several dynamic proactive and reactive thermal management mechanisms have been

proposed over the years. However, majority of the studies are focused on many-core

(more than 16 cores) general purpose processors and Network-on-chips (NoCs) on con-

trary to multi-core mobile platforms. Techniques in [Peters et al., 2016, Dey et al., 2019f,

Dey et al., 2019e] are solely focused on optimizing thermal behaviour during runtime

on mobile platforms. Note that this section covers approaches considering only ther-

mal management but not both thermal and power management that are provided in

the next section 2.5.

2.4.1 Proactive Approaches

In [Peters et al., 2016], the study proposed a power management strategy for mobile

games based on frame- and thread-based workload prediction on MPSoC. This work
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manages power by using the frame rate and thread workload as metrics to evaluate the

appropriate workload predictors, and apply thread-to-core mapping along with DVFS

to cater for frames per second constraint. The efficacy of the technique was proved on

Samsung Exynos 5422 MPSoC.

2.4.2 Reactive Approaches

Reactive techniques focus on reducing the temperature of the core/die when a certain

temperature threshold is reached and are already implemented in the governors of mo-

bile Linux kernel. Examples of actions taken when the thermal threshold is reached

could vary from switching on the active cooling of the device such as fan or throttling

the operating frequency of the cores.

In [Dey et al., 2019f], the study presented a dynamic thermal management technique

using frequency scaling to meet the performance deadline of the executing application.

This technique maps the operating frequency of the cores to a temperature while exe-

cuting an application and uses the mapping to select the appropriate frequency to cater

for the performance deadline while keeping the operating temperature lower than the

threshold. The efficacy of the technique is proved on Samsung Exynos 5422 MPSoC. In

another work [Dey et al., 2019e], the study presented a dynamic thermal management

technique where design space exploration is used to first reduce the number of possible

frequencies to only four and then selecting the most appropriate frequency to meet the

desired reward, which is the thermal constraint for an example.

2.5 Dynamic Power and Thermal Management

In this section, we explore the dynamic power and thermal management approaches

that are currently available in MPSoCs. The studies mentioned in this section focus on

both power and thermal management.

Reactive power and thermal management methodologies focus on reducing the tem-

perature of the die/individual core and reduce the power consumption after a certain

temperature threshold and/or power consumption threshold is reached. The time pe-

riod between two temperature or power consumption check is usually short to avoid

exceeding the thresholds. Reactive techniques are already implemented in the gover-

nors of mobile Linux kernel. When the temperature goes up and reaches the threshold

and/or when the power consumption reaches a threshold the Linux kernel throttles the

operating frequency of PEs as means of reactive measures. On the other hand, proactive

methodologies usually adjust the workloads or operating frequencies of the die/core by
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predicting the future power consumption or temperature behaviour. Proactive method-

ologies have higher performance overhead in general when compared to reactive ones

due to the computation of predicting temperature and power consumption increase.

2.5.1 Proactive Approaches

In [Prakash et al., 2016], the study estimated the temperature of the CPU and GPU for a

cooperative CPU-GPU thermal management on a multi-core mobile platform (Samsung

Exynos 5250 MPSoC). Their technique utilizes the actual temperature readings of the

CPU and GPU along with the cores’ utilization to set the operating frequency setting for

the next time interval.

On the other hand [Singla et al., 2015] proposed a predictor using power sensors and

thermal sensors to predict the next power consumption based on the following oper-

ating frequency setting. This work computes a power budget using the predicted tem-

perature and controls the operating frequencies along with the types and number of

processing cores. Their experiments were performed on Samsung Exynos 5410 MPSoC

to prove the efficacy of the technique and an extension of this paper has also been pub-

lished in [Bhat et al., 2017b].

In [Bhat et al., 2018], the study proposed an approach to achieve dynamic power-

thermal management in heterogeneous MPSoCs by adapting models for performance,

power consumption and temperature of various processing elements in the SoC. This

work predicts temperature and power consumption through online learning of GPU

frame processing time, GPU power consumption and power-temperature dynamics of a

SoC, and the experiments were performed on Qualcomm Snapdragon 810 and Samsung

Exynos 5422 MPSoCs.

In [Wächter et al., 2019], the study proposed predictive thermal and power man-

agement approach by predcting thermal behaviour for heterogeneous mobile platforms

combining with application mapping and DVFS to reduce the energy consumption. The

efficacy of the technique was proved on Samsung Exynos 5422 MPSoC.

2.5.2 Reactive Approaches

In [Bhat et al., 2017a], the study proposed power-temperature stability and safety anal-

ysis technique, which is based on a formula to compute the stable fixed point and max-

imum thermally safe power consumption at runtime. The efficacy of the technique is

proved on Samsung Exynos 5422 MPSoC. In [Bhat et al., 2019], the study proposed a
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power and thermal management governor using the power-thermal dynamics on smart-

phones, where throttling on individual cores is performed based on the application be-

ing executed. This technique moves the most power-hungry process, which cause ther-

mal violation, to low power processors, and throttle the cores to manage temperature

and power consumption.

In [Dey et al., 2019a], the study proposed a technique to reduce temperature and

power consumption of the device by dynamically selecting the appropriate operating

frequency based on linear relationship between frequency and operating temperature,

to improve the decision-making time of choosing the frequency. In this work, a linear re-

lationship is deuced between frequency and temperature of the device while executing

applications and at runtime the frequency-temperature mapping is used to maintain the

desired temperature while reducing power consumption at the same time. The efficacy

of the technique is proved on Samsung Exynos 5422 MPSoC. An extended version of the

work is provided in [Dey et al., 2019b] where performance of the executing application

is given priority.

The researchers in [Isuwa et al., 2019] proposed a dynamic thermal- and energy-

management approach for CPU-GPU based MPSoCs by managing resources, frequency

scaling and thread-partitioning of executing applications on CPU and GPU. The expe-

riences were performed on Samsung Exynos 5422 MPSoC. In [Angioletti et al., 2019],

the study presented a dynamic thermal and power management policy where parallel

applications are mapped to the cores by profiling the throughput at different operat-

ing frequencies and then selecting the cores and relevant frequency to achieve close-to-

optimal execution based on Quality of Service (QoS). If more than one mapping configu-

ration is available, then power consumption is estimated between the big cores and GPU

to select the appropriate option. In case big cores are chosen then power consumption

of the subset of the big cores are estimated to limit maximum temperature. This work

was evaluated on Samsung Exynos 5422 MPSoC.

2.6 Temperature Side-Channel Attacks

As low power mobile computing systems such as smartphones and wearables become

more and more ubiquitous, security issues in these and similar systems become more

paramount. These embedded systems have to face hostile security threats [Ambrose

et al., 2015, De Haas, 2007, Hutter and Schmidt, 2013, van Elsloo, 2016] such as physical,

logical / software-based and side-channel/lateral attacks. Amongst these, side-channel

attack is a popular security threat due to ease of access to the physical hardware [Kocher
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et al., 1999,Koc, 2009,Kong et al., 2008,Wang and Lee, 2007,Wang and Lee, 2008,Masure

et al., 2020,Ambrose et al., 2015,De Haas, 2007,Hutter and Schmidt, 2013], where attacks

are performed by observing the properties and behavior of the system such as power

consumption, thermal dissipation, electromagnetic emission, etc.

Comparatively a lot less documented studies are performed in temperature based

side channel attacks [Ambrose et al., 2015, De Haas, 2007, Hutter and Schmidt, 2013, Gu

et al., 2016, Long et al., 2018, Knechtel and Sinanoglu, 2017] in the embedded comput-

ing systems. Due to a rise in the use of heterogeneous multi-processors systems-on-

chips (MPSoCs) [Reddy et al., 2017,odr, b] in the embedded systems and a rise in studies

on thermal side channel attacks [Hutter and Schmidt, 2013, Masti et al., 2015, Bartolini

et al., 2016], it is crucial that side channel attacks in such platform should be addressed

with utmost importance [Bartolini et al., 2016]. Several studies [Hutter and Schmidt,

2013, Masti et al., 2015, Bartolini et al., 2016] have pointed out processor’s core tem-

perature could be used to carry out side channel attacks even when the system has

strong spatial and temporal partitioning of resources such as separate partitioning of

cache memory, bus bandwidth, etc. But all these studies are focused on general pur-

pose processors (using Complex Instruction Set Computer (CISC) architecture) and not

on embedded multi-processors (using Reduced Instruction Set Computer (RISC) archi-

tecture), which have different architecture and operating signature from the general

purpose ones [Patterson and Ditzel, 1980]. On the other hand, we could also see sev-

eral studies [Field et al., 2014, Georgiou et al., 2017] documenting power/energy con-

sumption for different types of instructions. Since there is a direct correlation between

power consumption and heat dissipation [DeVogeleer et al., 2014, De Vogeleer et al., ],

and armed with the knowledge of power consumption of each instruction executed on

processors, it is even easier to launch a side channel attacks on these systems.

In 1996, [Kocher, 1996] demonstrated that implementations of cryptographic algo-

rithms leak information from different side channels in the device. In [Hutter and Schmidt,

2013], the study evaluated the data leakages of CMOS devices via the temperature side

channel. This study shows that the temperature leakage is linearly correlated with the

power leakage model, however, it is limited by the physical properties of thermal con-

ductivity and capacitance of the CMOS device. In [Masti et al., 2015], the scholars demon-

strated that even when strong spatial and temporal partitioning of the processing cores

in a system are performed, processor core temperature can be used as a side channel as

well as a covert communication channel. This study evaluated their methodology in In-

tel Xeon server platform, however, MPSoCs have very different system components’ ar-

chitecture in comparison and no study has been performed to observe how temperature
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side-channel attack differs in a system that of MPSoCs’. On the other hand, in [Bartolini

et al., 2016], research only studied thermal covert channel attack, where covert com-

munication is established over temperature leakage, on multi-core in a general purpose

processing system.

In the study by [Gu et al., 2016], the scholars have proposed a thermal-aware hard-

ware functional unit that introduces noise to mask activity of encryption and decryption

in order to secure against temperature based side-channel attack. The experimental

work was done in simulation and is not easily deployable on existing embedded plat-

forms utilizing DVFS enabled multi-processors due to the proposed approach requir-

ing special hardware modifications. On the other hand, in the study by [Long et al.,

2018], the scholars have proposed an approach to apply multiple transmitter to one re-

ceiver by generating noise to mask temperature behavior on the main transmitter and

also establishing a new communication protocol between the transmitter and receiver.

In [Long et al., 2018], a transmitter is the CPU core, which is executing the main task or

set of tasks such as encryption/decryption, whereas, a receiver is the CPU core, which

is establishing the thermal side-channel attack. Although this approach is easily imple-

mentable in existing embedded mobile platforms, however, this methodology doesn’t

improve the spatial and temporal thermal gradient of the processing cores, which is also

important for low power mobile computing systems. Moreover, [Long et al., 2018] eval-

uated their work in simulation platforms and not in real devices. In the study [Knech-

tel and Sinanoglu, 2017], the scholars exploited the specifics of material and structural

properties in 3D integrated circuits during design time exploration, thereby decorrelat-

ing the thermal behavior from underlying power and activity patterns. However, this

approach also requires special hardware modifications in order to be implemented and

is not deployable in existing embedded mobile platforms. This approach also does not

consider the spatial and temporal thermal gradient of the PEs as well.

To this extent, we first need to define the key factors affecting temperature side-

channel attack in an embedded system utilizing DVFS enabled MPSoC and introduce

a metric that is capable of reflecting the vulnerability towards such an attack. This also

calls for approaches to secure against thermal side-channel attack that could be easily

deployed in existing and future mobile computing systems while conforming to reduced

spatial and temporal thermal gradient on the processing cores.
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2.7 Summary

This chapter provided a survey of emerging technologies, dynamic power and thermal

management approaches, and temperature based side-channel attacks for multi-core

mobile computing platforms. The approaches performing proactive and reactive man-

agement while following some principles are surveyed. Open challenges are also iden-

tified based on the ongoing academic and industrial research activities. The identified

emerging technologies are expected to advance in the future to address the challenges

of dynamic computing resource management into the next era.
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Chapter 3

Performing DVFS on CPU

Automated feature extraction from program source-code such that proper computing

resources could be allocated to the program is very difficult given the current state of

technology. Therefore, conventional methods call for skilled human intervention in or-

der to achieve the task of feature extraction from programs. This chapter proposes a

novel human-inspired approach to automatically convert program source-codes to vi-

sual images such that the images could be then utilized for automated classification

by visual convolutional neural network (CNN) based algorithm. After the program is

classified then DVFS is performed on the CPU of the mobile MPSoC to optimize power

consumption.

3.1 Prologue to First Contributory Article

This contributory chapter is based on the following articles along with my personal con-

tribution to these articles.

3.1.1 Article Details

1. Somdip Dey, Amit Kumar Singh, Dilip Kumar Prasad, and Klaus Dieter Mcdonald-

Maier. “SoCodeCNN: Program source code for visual cnn classification using com-

puter vision methodology." IEEE Access 7 (2019): 157158-157172. [Most popular

paper of IEEE Access and IEEE Xplore from December, 2019 to August, 2020]

2. Somdip Dey, Suman Saha, Amit Singh, and Klaus McDonald-Maier. "Asynchronous

Hybrid Deep Learning (AHDL): A Deep Learning Based Resource Mapping in DVFS

Enabled Mobile MPSoCs." In 2021 IEEE 7th World Forum on Internet of Things

(WF-IoT), pp. 303-308. IEEE, 2021.
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Personal Contribution In The Articles: Conceptualization, methodology, experimen-

tal software design were performed by Somdip Dey. Validation of the methodology was

performed by Somdip Dey and Amit Singh while formal analysis was done by Somdip

Dey. Resources and data curation were also done by Somdip Dey along with the prepa-

ration of the original draft of the papers. Paper writing was reviewed by Somdip Dey,

Amit Singh, Suman Saha, Dilip Kumar Prasad and Klaus McDonald-Maier. Visualization

of data was also done by Somdip Dey.

3.1.2 Media coverage

Given the popularity of the methodology (SoCodeCNN) in this article, it is covered by

media (news) outlets as follows.

1. “Research could make robots more resilient than ever before", University of Essex.

Article link

2. “Research Could Make Robots More Resilient Than Ever Before", Robotics News.

Article link

3.2 Introduction & Motivation

Recently, we could see the emergence of several machine learning based methodolo-

gies to map and allocate resources such as CPU, GPU, memory, etc. to applications on

embedded systems in order to achieve power efficiency, performance, reliability, etc.

Several studies, which are focused on extracting features from source code of an appli-

cation and then utilizing several machine learning models [Taylor et al., 2017,Cummins

et al., 2017, Allamanis et al., 2018, Ashouri et al., 2018] such as Support Vector Machines

(SVMs), Nearest Neighbor, etc. to classify different set of applications and then deciding

the resources that need to be allocated to such applications. Using such methodologies

also have their own disadvantages. Depending on feature extraction such as number of

code blocks, branches, divergent instructions, and then utilizing machine learning on

them usually requires accurate identification of features from the training data and then

feeding them to the model. Extracting features from a source code of a program and

then feeding to the machine learning model so that further inference could be made is

difficult in many ways.

It could be observed that with an addition of simple load & store instruction in a

“Hello, World" program can lead to 16.98% difference in the platform-independent LLVM
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Figure 3.1: Histogram of source-code of “Hello, World" program vs Histogram of source-
code of it with an additional integer variable initialization (Gray level vs Number of pix-
els)

Figure 3.2: Differences in activation of neurons represented in shades of blue colour
encoding

intermediate representation (IR) code [Lattner, 2002,Ko et al., 2015], which is a platform-

independent low-level programming language. This proves that there is a scope to find
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and learn the pattern from the program source code to build more intelligent infor-

mation systems such that autonomy and ability to demonstrate close-to-human like

intelligence could be demonstrated by the computing system. LLVM IR is a strongly

typed reduced instruction set, very similar to assembly level language, used by the LLVM

compiler to represent program source code. Fig. 3.1 shows the histogram of the IR

code of a “Hello, World!" program written in C (see Program 1) and another C pro-

gram with an addition of integer variable initialization code (see Program 2). When the

source code of these programs are represented into visual images using our SoCodeCNN

(Program Source Code for visual Convolutional Neural Network (CNN) classification)

approach and passed them through a visual CNN based model (as mentioned in Sec.

2.2.2, Chapter 2), VGG16 [Simonyan and Zisserman, 2014], pre-trained with ImageNet

dataset [Krizhevsky et al., 2012, Russakovsky et al., 2015], it is observed that there was

14.77% difference in activation of neurons in the last fully connected layer consisting of

1000 neurons. The difference between the activation of neurons for two different pro-

grams are evaluated by converting the activation of neurons for each program into visual

images and then compared using Quality of Index methodology (Q) [Wang and Bovik,

2002]. Fig. 3.2 shows the differences in activation of 1000 neurons in the last fully con-

nected layer of VGG16. In this figure, each cell in the matrix is represented as a colour

ranging from 0 to 255, where each value ranges from white to different shades of blue. If

the value is closer to 255 then the colour will be the darkest shade of blue whereas, the

shade of blue fades away as the value is closer to 0. For the cells with white colour means

that there was no difference (value equal to 0) in activation of neuron in that place for

both the image representations of the programs (Program 1 and Program 2). However,

if the cell has a colour other than white means that there is a difference between the

activation of neurons in that place and the strength of the difference is represented by

the darker shade of blue as mentioned earlier. The difference of neuron values are eval-

uated through the blue colour representation is by finding the difference in the neuron

values and then normalizing the value ranging from 0 to 255 (similar to ASCII values),

where each value represents a shade of blue as mentioned above. More details on evalu-

ating the difference between two images as an image representation of different shades

of blue is provided in Sec. 3.6.
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Program 1: Pseudo-
code for “Hello
World!"

print(“Hello,
World!");

Program 2: Pseudo-code for
“Hello World!" with addi-
tional load/store instruction

integer a = 3;
print(“Hello, World!");

In this chapter, the proposed methodology is inspired by the human being’s abil-

ity to learn from its surrounding visually [Marr, 1982, Messaris, 1994, Dallow, 2009, Dil-

lon and Spelke, 2017, Ahissar et al., 2009]. In [Marr, 1982, Messaris, 1994] it is evident

that humans learn and interact with their surroundings based on their visual percep-

tion and eyes playing an important role in the process and have grown to be one of the

complex sensory organs with millions of years evolution. In fact, most humans start to

learn and educate based on the visual representation of knowledge, may that be in the

form of languages in written form or associating words with the visual representation

of objects. Most scientists have also adopted this ideology and tried to extract patterns

so that machines could be taught in the same manner. This gave rise to the interdisci-

plinary research between computer vision and natural language processing (NLP) in the

field of artificial intelligence [Wiriyathammabhum et al., 2017], where the main essence

of the study is to teach computers to recognize, understand and learn human (natural)

languages in the form of images. However, the trend in this interdisciplinary research

is to understand patterns from human languages and then impart the knowledge to

computers. For example, in order to teach computers to understand the digit ‘7’, fea-

tures from several human written forms of ‘7’ are extracted and then imparted to the

computer [Goodfellow et al., 2016]. This method of learning could be synonymous to

the example where a non-English speaking foreigner learns English by first associating

the English words to their mother tongue and then remembering the word to learn En-

glish [JANČOVÁ, 2010,Krajka, 2004]. Let’s call this learning approach 1. In contrary, if we

consider the example of how most human babies learn a language is through the process

of associating phonetic words with the visual representation of objects first and then

understanding the differences in features of different objects and remembering the as-

sociated words [Shinskey and Jachens, 2014, Dillon and Spelke, 2017, Thompson, 2001].

Let’s call this learning approach 2. While it could be very intuitive to just take a picture

of the program source-code (Program 1 & 2) and use NLP and visual CNN to classify the

program, this approach would be similar to the learning approach 1. However, learning

approach 1 has its own limitations, especially when complex language frameworks are

used in programs (more about this is discussed in Sec. 3.3).
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Although it should be kept in mind that the learning process in a human being is

much more complex than covered by just two examples mentioned above and includes

knowledge and information gathered from all sensory organs [Thompson, 2001, Ahissar

et al., 2009] such as eyes, ears, tongue, skin, and nose.

In this chapter, the same ideology of learning is adopted through visual representa-

tion (learning approach 2) by converting the program source code into machine under-

standable intermediate representation and then trying to extract patterns and learning

from them such that DVFS could be performed based on the type of the program appli-

cations.

3.2.1 Contributions

To this extent the main contributions of this chapter are as follows:

1. Proposed SoCodeCNN, a way to convert program source code into more machine

understandable visual representation (images) such that it makes the process of

feature extraction from such images completely automated by utilizing the inher-

ent feature extraction of visual deep convolutional neural network (DCNN) based

algorithms, taking the expert skillful human effort out of the context.

2. Proposed a new metric index named Pixelator: Pixel wise differentiator, to under-

stand the differences between two images pixel by pixel in a visually representative

way such that we can quantitatively evaluate the proposed SoCodeCNN method.

3. Provided a methodology to utilize SoCodeCNN for application classification in

embedded devices and then perform CPU DVFS to optimize power consumption.

The approach uses SoCodeCNN based classification to predict the types (Compute

intensive, Memory intensive, Mixed workload) of different benchmark applications

along with their probability of being a certain type, and then utilizing our heuristic

based power management technique to save power consumption of the embed-

ded device (Samsung Exynos 5422 multi-processor system-on-a-chip [exy, a]). To

the best of our knowledge, this is the first work to convert program source code

to a more machine understandable visual image and then classify into the type of

program using CNN model in order to optimize power consumption.

The rest of the chapter is organized as follows. Sec. 3.3 the opportunity of automat-

ing feature extraction from program source code with a case study. Sec 3.4 mentions the

preliminary concept that we need to know in order to under the proposed methodology.

In Sec. 3.5, we explain our proposed methodology - SoCodeCNN, while Sec. 3.6 explains
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the process of Pixelator view. Sec. 3.7 shows the efficacy of SoCodeCNN via experimen-

tal validation while Sec. 3.8 shows an exemplar application of SoCodeCNN to perform

DVFS on CPU in devices. Finally, Sec. 3.9 discusses the future scope of this research and

Sec. 3.10 summarizes the chapter.

3.3 Motivational Case Study

3.3.1 Traditional Feature Extraction from Source Code

Let us discuss the traditional approach of using machine learning on program source

code with an example. Let’s assume that there is a simple program, which is capable of

executing on several CPUs using OpenMP [ope, ] programming framework. If we con-

sider the following programs in Program 3 and Program 4 then if a skillful human with-

out a knowledge of OpenMP is given the task of extracting features such as how many

parallel executions of for loops are there or how many for loops are there in the pro-

grams, that person would classify both the programs (3 & 4) as the same, having two for

loops in each algorithm. Whereas, Program 3 has one general for loop and one parallel

for loop capable of executing on multiple threads. Therefore, the human being has to

have special technical skills in order to understand such differences. In the study [Cum-

mins et al., 2017], the authors proposed a heuristic based deep learning methodology

for allocating resources to executing applications by utilizing feature extraction from

source code and then training a deep neural network (DNN) model to take decisions on

resource allocation. Their proposed methodology requires special technical skill-set as

described earlier.

Program 3: An OpenMP example
of partial program

#pragma omp parallel
{

#pragma omp for
for (i=0; i<N; i++) {

c[i] = a[i] + b[i];
}

}
for (i=0; i<M; i++) {

d[i] = a[i] + b[i];
}

Program 4: An example of par-
tial program

for (i=0; i<N; i++) {
c[i] = a[i] + b[i];

}
for (i=0; i<M; i++) {

d[i] = a[i] + b[i];
}

On the other hand if we consider that a program consists of 1000 features such as

number of code blocks, branches, divergent instructions, number of instructions in di-
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vergent regions, etc. and each feature extraction requires 3 seconds for a human be-

ing then such program would consume 3000 seconds or 50 minutes for complete fea-

ture extraction so that those features could be further used in machine learning algo-

rithm. Since feature extraction from program source-code using NLP is heavily utilized

in compiler optimization and thus someone could argue that the field of compiler op-

timization has improved a lot in past couple of years [Namolaru et al., 2010, Leather

et al., 2014]. However, given the emergence of specialized frameworks and directives

such as OpenMP, OpenCL, OpenVX, modern automated code feature extraction meth-

ods [Taylor et al., 2017, Cummins et al., 2017, Allamanis et al., 2018, Ashouri et al., 2018]

are still lacking in pace in terms of accurately extracting such features in a completely

automated manner. Therefore, human intervention for improved accuracy in feature

extraction is always required. However, if the SoCodeCNN methodology of converting

the program source code to images is utilized and then use the images in visual convo-

lutional neural networks (CNNs) then it does not require any human intervention in the

process and could end up saving 50 minutes in manual feature extraction such as the

case for the example mentioned above.

3.3.2 Filling up the gap

Instead of identifying features from source code by the user and then feeding them to

machine learning models as in the conventional approaches, with our approach the

machine learning model is able to understand and learn from the patterns in the source

code of the program by themselves. One of our important observations which has led to

the proposal of our methodology, “SoCodeCNN", human evolution inspired approach

to convert program Source Code to image for CNN classification/prediction, is that when

the two different source codes (Program 1 & 2), where the difference is only of that of an

additional load/store instruction, are compared there was a difference of 16.98% be-

tween the images using the Quality of Index methodology (Q) [Wang and Bovik, 2002],

and a Mean Squared Error (MSE) value of 7864.3. In Fig. 1, the histogram of two dif-

ferent aforementioned source codes are shown, which highlights the fact that even for

a minute difference such as introducing a simple instruction is capable of creating a

different pattern. The main motivation of this study is to fill up the gap in the usual

conventional approaches by employing “SoCodeCNN" to automate feature extraction

from program source-codes and using visual based machine learning algorithm to un-

derstand the inherent differences in patterns of source codes of different programs so

that further learning and classification could be performed on such programs. In this

proposed methodology, an effective way of converting source codes to visual images are
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introduced such that they could be fed to different computer vision based Deep Convo-

lutional Neural Network for training and classification purposes.

3.4 Preliminaries

3.4.1 Pre-trained Networks and Transfer Learning

A conventional approach to enable training of Deep Neural Network/Convolutional Neu-

ral Network (DNN/CNN) on relatively small datasets is to use a model pre-trained on a

very large dataset, and then use the CNN as an initialization for the applicative task of

interest. Such a method of training is called “transfer learning" [Pan and Yang, 2009] and

the same principle has been followed here. The chosen CNN models mentioned in Sec.

3.7 are pre-trained on ImageNet.

3.5 SoCodeCNN: How it Works

Many human beings are not able to read or write using written languages, yet intelligent

capacity of human brain and sophistication of visual capacity make the same human

being intelligent enough to learn about the surrounding through visual representation

of every object. For example, a human being might not be able to read or write “car" or

“truck", yet when he/she sees one, the person instantly can differentiate between a car

and a truck based on obvious visual features of each of these objects.

Source 
Code of 

Application

Process IRPre-process Source-Code

IR Generator
Code 

Cleanser
Image 

Creator

Application 
(Appi)    

Source 
Code of 

Appi

SoCodeCNN
Program 
Classifier

DVFS

(Output)(Input)

Figure 3.3: Block diagram of SoCodeCNN

The same kind of intelligence is tried to be imparted to a computing machine by rep-

resenting each source-code of applications in the form of visual images. SoCodeCNN is

not just a methodology but also a software application that processes source-codes to

be represented as visual images, which is understandable by computing machines. It

has two parts (Pre-process Source-Code and Process Source-Code IR), which are achieved

through three distinct modules (refer to Fig. 3.3) accomplishing separate tasks on their
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own in order to achieve the accumulated goal. The three modules are as follows: IR

Generator, Code Cleanser & Image Creator. IR Generator and Code Cleanser pre-process

the source-code of the application in order to generate platform-independent interme-

diate representation code so that the visual image could be created, whereas the Image

Creator actually processes the intermediate representation code of the program source-

code to create a visual image. The overview of SoCodeCNN is provided in Algorithm

5. Next, more details of steps Pre-process Source-Code and Process Source-Code IR are

provided below.

3.5.1 Pre-process Source-Code

The algorithm of this part is provided in Algo. 5 (from line 4 to 11).

3.5.1.1 IR Generator

In this intermediate step, the LLVM intermediate representation (IR) [Lattner, 2002, Ko

et al., 2015] of the source code of an instance of an application (Appi ) is generated.

LLVM IR is a low-level programming language, which is a strongly typed reduced in-

struction set computing (RISC) instruction set, very similar to assembly level language.

The importance of converting to LLVM IR is that the code is human readable as well

as easily translatable to machine executable code, which is platform independent. This

means that LLVM code could be used to build and execute an application instance (Appi )

on any operating system such as Windows, Linux, Mac OS, etc. LLVM also provides a

methodology to create optimized IR codes, where the IR code is optimized even further

such as not including unused variables, memory optimization, etc. The IR Generator

generates the optimized IR code from the program source-code for further processing.

For example: When the Program 1 is converted to LLVM IR code the IR code is generated,

as shown in the snapshot in Fig. 3.4.(a). It could be noticed that the first four lines

consist of meta-data about the program itself such as the name of the program, related

meta-information, etc. Although it should be noted that regardless of the target platform

and the platform OS information is available in the LLVM IR code as meta-information,

however, the variables and other instructions generated as part of the IR code is platform

independent.

3.5.1.2 Code Cleanser

The main job of the Code Cleanser module is to get rid of the redundant part of the IR

code, which does not add any value in the process of understanding the implementation
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(a) Snapshot of LLVM IR Code of Program 1 generated by IR Generator module

(b) Snapshot of LLVM IR Code of Program 1 after Code Cleanser module processed the IR code

Figure 3.4: Processing of LLVM IR Code of Program 1 by IR Generator and Code Cleanser
modules
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of the application. Such redundant part of the code consists of initializing the name of

the application and on which platform the LLVM IR code is built for or comments in the

IR, etc. Once the redundant part of the LLVM IR code is removed the IR is ready to be

utilized for visual image creation by the Image Creator.

For example: Fig. 3.4.(b) shows the IR code after Code Cleanser processes the IR code

which is generated from the IR Generator module.

3.5.2 Process Source-Code IR

The algorithm of this part is provided in Algo. 5 (from line 12-34).

Image Creator

The Image Creator module first gets the total number of characters in the file consisting

of optimized LLVM IR code (as mentioned in Sec. 3.5.1.2) and the number of characters

(Si zeO f (I R) in line 14 of Algo. 5) is denoted by tot alSi ze. The tot alSi ze would be used

to evaluate the height and width of the visual image to be created and the relationship

between the height, width and tot alSi ze is provided in Eq. 3.1. The height and width of

the image are determined such that
∣∣hei g ht −wi d th

∣∣ (see Eq. 3.1) is the least from all

the possibilities of a set (F ) of factors, F = { f1, f2, .... fn} (where f1, f2, .... fn are all possible

factors of tot alSi ze), of tot alSi ze, and hei g ht and wi d th belong to the set F .

tot alSi ze = hei g ht ×wi d th (3.1)

When the hei g ht and wi d th is evaluated, the Image Creator module creates an in-

stance of an empty image matrix (Imgi ) as 0Mhei g ht×wi d th . The Image Creator then parses

through the file containing the LLVM IR code and reads the file character by character

and fetches the ASCII value (a) of those characters. Since each unique character will

have a unique ASCII value (number), the IR code will be converted to their equivalent

number representatives, which are correspondingly processed by the computing sys-

tem. After fetching the ASCII value (a j ) of the character at position j of tot alSi ze, the

value at the corresponding position on the image matrix (Imgi ) is replaced with the

ASCII value of the character (as shown in line 28 to 31 in Algo. 5) since tot alSi ze follows

a relationship with hei g ht and wi d th as shown in Eq. 3.1. The image matrix could be

denoted by the formula portrayed in Eq. 3.2.

Imgi = (ahei g ht ,wi d th) ∈Rhei g th×wi d th

and ahei g ht ,wi d th = ASC I I ( a j )∀ j ∈R & 0 ≤ j ≤ tot alSi ze
(3.2)
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Algorithm 5: SoCodeCNN: The Methodology
Input:
S(App): set of source-code of applications, where source-code of each application
instance is represented as Appi

Output: I : set of visual images, each representing each Appi in S(App)
1 Initialize:
2 hei g hti mag eM atr i x = 0;
3 wi d thi mag eM atr i x = 0;

4 Preprocess Source-code:

5 foreach Appi in S(App) do
6 Generate LLVM IR using IR Generator module;
7 Generate LLVM Optimized IR using IR Generator module;
8 Strip all the program related metadata using Code Cleanser module;
9 Strip all the comments using Code Cleanser module;

10 Store the IR in a set S(I R);

11 end

12 Process Source-code IR using Image Creator module:

13 foreach I Ri in S(I R) do
14 tot alSi ze = Si zeO f (I Ri );
15 foreach Byte in I Ri do
16 Store in i mag e Ar r ay[tot alSi ze] as an integer value;
17 end
18 leng thO f F actor Ar r ay = Total number of factors of tot alSi ze;
19 Factorize tot alSi ze and store in f actor Ar r ay[leng thO f F actor Ar r ay];
20 foreach Factor, f , in f actor Ar r ay[leng thO f F actor Ar r ay] do
21 di vi sor = tot alSi ze/ f ;
22 if ( f −di vi sor ) is least then
23 hei g hti mag eM atr i x = f ;
24 wi d thi mag eM atr i x = di vi sor ;

25 end
26 end
27 Create an image matrix, Imgi with height, hei g hti mag eM atr i x , and width,

wi d thi mag eM atr i x ; foreach ASCII Integer value, ai , in i mag e Ar r ay[tot alSi ze] do
28 foreach Cell, ci , in Imgi do
29 Store ai in ci ;
30 end
31 end
32 Store Imgi in I ;

33 end
34 return I ;

For example: After Image Creator processes the optimized LLVM IR code of Program 1, a

visual image is generated as the Output in Fig. 3.3.

Note that for some programs/applications the total number of characters of the op-
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timized IR code (tot alSi ze) could be a prime number, which means that the either the

height or width in Eq. 3.1 can be represented as 1× pr i menumber (as shown in Eq.

3.3).

tot alSi ze = 1×pr i menumber (3.3)

In case, the tot alSi ze is a prime number as in Eq. 3.3, the generated image from

the Image Creator module will be an image where the height is equal to 1 and the width

is the prime number (or can also be interchanged depending on implementation such

that hei g ht = pr i menumber & wi d th = 1). Even if the generated image from the

Image Creator module is oddly shaped, where hei g ht = 1 & wi d th = pr i menumber ,

this would not change the performance while the image is being used to train CNNs as

the input images in CNNs are reshaped depending on the CNN’s architecture regardless

[Manaswi and Manaswi, 2018, Ghosh et al., 2019]. This is also true if hei g ht >> wi d th

or wi d th >> hei g ht in Eq. 3.1.

3.6 Pixelator: Pixel Wise Differentiator of Images

3.6.1 Overview of Pixelator

A special algorithm is designed, which is capable of showing pixel wise difference be-

tween two separate images in the form of different colour shades. This algorithm is

called as Pixelator view (Pixel wise differentiator view). In the Pixelator view, two images

are compared pixel by pixel where each difference in the pixel value is evaluated using

Eq. 3.4 and the difference is shown in a cell in the matrix representation. Each pixel of

first image (P 1), which is being compared, is converted into its equivalent integer value.

Since, each pixel of the image has a Red-Green-Blue (RGB) value associated with it, the

formula of (R ×216 +G ×28 +B) is used to convert the associated RGB value of the pixel

of the first image to its corresponding integer, and then compared with the integer value

(RGB to integer) of the corresponding pixel in the second image (P 2), where the differ-

ence in the value only ranges from 0 to 255 similar to ASCII values. Each value, ranging

from 0 to 255, represents a shade of blue. Since, most of the program source codes are

written in the English language where each character in the code could be represented

by a unique ASCII value ranging from 0 to 255, henceforth, the range of difference be-

tween the pixels is chosen to be within that.

i nt (P ′) =
∣∣∣i nt (P 1

i , j )− i nt (P 2
i , j )

∣∣∣ mod 255 (3.4)
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If we assume that h and w are the height and width of the referenced (original) im-

age respectively then the Pixelator also integrates (adds) the difference between corre-

sponding pixels to quantify the difference between two separate images using the Eq.

3.5. In 3.5, the h and w corresponds to the height and width of the image (P ′) respec-

tively. We have given the index in Eq. 3.5 the same name as the approach itself for ease

of naming convention. If the value of the index, Pixelator, using Eq. 3.5 is high then it

means that the difference between the two images is also high and directly proportional.

Note: If the size of the images (P 1,P 2) are different then the pixel value of the smaller

image (P smal l ,whereP 1 ≤ P small ≤ P 2) is compared with corresponding pixel value of

the larger image (P l ar g e ,whereP 1 ≤ P l ar g e ≤ P 2) till the difference of all the pixel val-

ues of dimension (hsmal l ×w small ) of P small are evaluated, where hsmall , w small corre-

sponds to the height and width of P small respectively.

The reason to have both a quantitative value and a visual image to understand the

difference between two images, pixel by pixel, is to make it easier for both human and

machine to understand the differences between the images. Although it is easier and

intuitive to understand the differences of the images just by visualizing and inspecting

the difference by a human being, however, for a machine it is not easy to achieve such

level of capability without some complex computation. Whereas, machines can process

numbers faster and hence having a quantitative value (number) associated to measure

the difference between two images is more readily understandable by the machine.

Pi xel ator =
h,w∑
1,1

i nt (P ′) (3.5)

3.6.2 Comparison of Pixelator with other popular methodologies

Some of the popular approaches for assessing perceptual image quality to quantify the

visibility of errors (differences) between a distorted image and a reference image in-

cludes Mean Squared Error (MSE) [Martens and Meesters, 1998], Quality of Index (Q)

methodology [Wang and Bovik, 2002] and Structural Similarity Index (SSIM) [Wang et al.,

2004] for measuring image quality.

A widely adopted assumption in image processing is that the loss of perceptual qual-

ity is directly related to the visibility of the distorted image. An easy implementation of

this concept is visualized in the MSE [Martens and Meesters, 1998], where the differ-

ences between the distorted image and reference image is quantified objectively. But

two distorted images with the same MSE may have very different types of distortion,
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where some of the distortions are much more visible than others. To overcome this is-

sue in the study, Quality of Index (Q) methodology [Wang and Bovik, 2002], Wang et al.

developed an approach, which would quantify the distortion by modeling it as a com-

bination of three factors: loss of correlation, luminance distortion, and contrast distor-

tion. Hence, quantifying distortion in images as a number does not truly reflect the

exact area on the image where distortion happened nor reflects the kind of distortion

that took place. In contrast in SSIM [Wang et al., 2004] approach, Wang et al. developed

a framework for quality assessment based on the degradation of structural information

by computing three terms: the luminance, the contrast and the structural information.

The overall SSIM is a multiplicative combination of the aforementioned three terms and

represents the structural distortion appropriate for human visual perception. However,

for minuscule distortions in one of the colour channels out of the RGB channels of the

image, SSIM fails to represent such minimal distortion which could be differentiated for

human visual perception (see example in Sec. 3.6.2.1).

In order to overcome the drawbacks of MSE, Q and SSIM, Pixelator is developed,

which is not just able to quantify the distortion but at the same time represent the ex-

act distortion area in an image representation, which is suitable and comprehensive for

human visual perception. Pixelator is developed, especially to understand differences

in images (example result as Output in Fig. 3.3) created from the SoCodeCNN approach

such that we could understand and visualize minuscule modifications in these visual

images due to minuscule changes in the program source-code, which might not be vi-

sualized easily in general.

3.6.2.1 An example demonstrating the importance of Pixelator

The Lena image (refer to Fig. 3.5.(a)) is chosen, which is popularly utilized in image pro-

cessing, to demonstrate the effectiveness of Pixelator over approaches such as MSE, Q

and SSIM. Only one of the colour channels of the Lena image is chosen and for the pixel

values in that channel representing 94, 95, 96, 97 and 220, the corresponding values are

incremented by 2 (distorted Lena image is shown in Fig. 3.5.(b)). The reason to choose

the aforementioned pixel values is that from the histogram of the image it could be ob-

served that these pixel values were the most frequently occurring values in the chosen

Red channel. When the difference between distorted Lena image and the referenced

Lena image are evaluated using MSE, Q, SSIM and Pixelator, we could visualize that Pix-

elator is able to quantify and reflect the differences in the form of an image with respect

to human visual perception (refer to Fig. 3.5.(d)), and at the same time outperforms the

popular approaches. By differentiating the distorted and referenced images MSE gave
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(a) Lena Original (b) Lena Distorted

(c) SSIM Map (d) Pixelator View

Figure 3.5: Highlighting differences between distorted Lena and reference Lena images
using SSIM and Pixelator
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a value of 9.7221, Q index evaluated to be 0.99984 (approx.), SSIM was evaluated to be

0.9959 (approx.) and Pixelator was evaluated to be 30533.43457. However, Pixelator is

able to represent the differences more prominently in the form of visual representation

image than SSIM, which is shown in Fig 3.5 as SSIM map. It could be noticed that regard-

less of having a SSIM value of 0.9959 (approx.), the approach is not able to represent the

differences visually in SSIM map (refer to Fig. 3.5.(c)), whereas Pixelator is able to high-

light the difference in each pixel wherever there is one.

Therefore, using Pixelator we are able to both visualize the difference between the

original and distorted image, and quantify the difference at the same time, which could

not be achieved by other popular methodologies such as MSE, Q and SSIM.

3.7 Experimental and Validation Results of SoCodeCNN

3.7.1 Experimental Setup

Several sets of experiments were run to evaluate the potential and efficacy of utilizing

SoCodeCNN and scale its usability. The first experiment denoted as Exp. 1 was per-

formed to see how much difference could be there in the visual images with the slightest

modification in the program source code. Several simple programs have been chosen

with slight modifications to convey the efficacy of utilizing the SoCodeCNN methodol-

ogy. In this experiment, the base program (denoted as 1st program) is a “Hello, World!"

program, which just prints out “Hello, World!" on the terminal (see Program 1). An ad-

ditional load/store instruction in the base program (1st program) was added, where an

integer value is initialized into a variable and this program is denoted as the 2nd program

(see Program 2). In the next program, an additional code was added to the base program

to print out three integer values and we denote this program as 3rd program (see Pro-

gram 6). In the 4th program, also denoted as the same name in figures and tables, has

some additional load/store codes to initialize three integer variables whereas one of the

variables is the sum of the other two and the result of the summation is printed out on

the terminal (see Program 7). SoCodeCNN was used to convert these program source-

codes to visual images and compared the differences using histogram, Mean Squared

Error (MSE) [Martens and Meesters, 1998] and Quality of Index (Q) methodology [Wang

and Bovik, 2002].

46



Program 6: 3rd program
pseudo-code

print(“Hello, World!");
print(1 2 3);

Program 7: 4th program
pseudo-code

integer a = 3, b = 4, c;
print(“Hello, World!");
c = a + b;
print("Sum of " + a + " and " + b + "

is " + c);

In the second set of experiments, denoted by Exp. 2 VGG16 [Simonyan and Zisser-

man, 2014] Imagenet trained model was chosen with a custom classifier having only

three classes: Compute, Memory, Mixed. According to several studies [Singh et al., 2013,

Reddy et al., 2017] different workloads could be classified as compute intensive, memory

intensive, and mixed (compute and memory intensive) based on the number of instruc-

tions per cycle or memory accesses. The purpose of Exp. 2 is to show the efficacy of ex-

isting CNN models to classify programs based on images generated by SoCodeCNN. The

classes (Compute, Memory, Mixed) of our classifier reflects the different types of work-

loads and hence denotes the type of program application. The class Compute refers

to the programs, which are very compute intensive, but has low memory transactions

(read/write, data sharing/exchange) in comparison, whereas the class Memory repre-

sents the programs, which have really high memory transactions in comparison to the

computation performed in such programs. The class Mixed represents programs, which

are both compute intensive and memory intensive. All the benchmarks of the PARSEC

[Bienia, 2011a] benchmark suit were converted using the SoCodeCNN and passed the

corresponding images through the pre-trained VGG16 to fetch the Deep Dream [Szegedy

et al., 2015] images from the last fully connected layer of the model for each of the three

classes to compare the visual differences between these classes if there is any.

Conv1 Conv2
Conv(n)Conv(n-1)

Image of 
program 
source code

Pool 
features

New Classifier Module
(randomly initialized)

Prediction

Trained Convolutional Base (frozen) Fine-tune by continuing the 
backpropagation on target task

Figure 3.6: Network architecture used for fine-tuning

In the third set of experiments (Exp. 3), SoCodeCNN was utilized to convert the pro-
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gram source-codes of all benchmarks from the PARSEC, SPLASH-2 [Woo et al., 1995a]

and MiBench [Guthaus et al., 2001] benchmark suit. The purpose of Exp. 3 is to show

scalability of SoCodeCNN ’s application with CNN model by classifying programs from

some of the popular benchmark suits. There were 28 individual images in total created

from PARSEC and SPLASH-2 including P-thread and serial version of some of the bench-

marks, and were segregated into three different classes (Compute, Memory & Mixed)

based on the study [Bienia et al., 2008] comparing each benchmark with respect to their

different number of instructions and memory transaction. To train and test the im-

ages for classification purposes VGG19 CNN model is used instead of VGG16 since it

produced improved classification accuracy due to its deeper architecture. VGG19 CNN

model was fine-tuned by adding our a new randomly initialized classifier, and training

the last fully connected layer by freezing all the layers of the base model (frozen layers

represented with gray colour in Fig. 3.6) and unfreezing the last fully connected layer

(unfrozen layers represented with green colour in Fig. 3.6). In this way, only the weights

of the last fully connected layer is updated and the classifier is trained with our images

(see Fig. 3.6 for the CNN architecture used for fine-tuning). The source-code of bench-

marks of MiBench are used for cross-validation purpose and testing the trained VGG19

CNN with our defined classes. The 28 images from PARSEC and SPLASH-2 were utilized

to train the classifier and the last fully connected layer of the VGG19 pre-trained CNN

using transfer learning [Pan et al., 2010] so that during prediction we could classify a

program source-code image using a visual based CNN model such as VGG16/19. The

Compute and Mixed classes have 10 images each, and the Memory class has 8 images

for training. Due to the imbalance in the training dataset, weights of the classes were

set accordingly to facilitate fair training. It should be kept in mind that training of the

CNN model could be performed on any type of computing system and then the trained

model could be used on the mobile computing system such as Odroid XU4 (utilizing

Exynos 5422 MPSoC) for evaluation.
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Program 8: Execute power of 2
for 100,000 numbers iteratively
on 4 different threads

function evaluatePowerOf2() {
foreach i in 100,000 do

Compute i 2;
end
}
Execute evaluatePowerOf2() on

Thread 1;
Execute evaluatePowerOf2() on

Thread 2;
Execute evaluatePowerOf2() on

Thread 3;
Execute evaluatePowerOf2() on

Thread 4;

Program 9: Execute power of 2
for 100,000 numbers iteratively
and add the result with itself in a
separate variable

function doubleSumOfPowerOf2() {
foreach i in 100,000 do

z = Compute i 2;
y = z;
x = y + z;

end
}

Since most of the benchmarks from MiBench are mixed load and, sometimes the

benchmark programs are complicated to be segregated into either of the three different

classes. Hence, to show the efficacy of using SoCodeCNN approach in CNN based algo-

rithm we wrote simple programs, which would directly reflect either compute intensive

or memory intensive or mixed workloads, and evaluate the classification outcome of

such programs in Exp. 3. We wrote a simple program (see Program 8), which computes

power of 2 for 100,000 numbers iteratively on 4 different threads and hence it could be

classified as ‘Compute’. We also slightly modified the program to make it more memory

intensive by initializing the value of the power of 2 in a separate variable and then adding

the result with itself in another separate variable (see Program 9). In Prog. 9 instead of

executing the computation function on four different threads, we execute it only on one

thread, making it more memory intensive. We further slightly modified Prog. 9 to make

it mixed workload (compute and memory intensive) by executing the memory intensive

function iteratively on 4 separate threads (see Program 10). We fed the source-code of

the Prog. 8, 9 and 10 to the trained CNN in order to verify the output classification.

3.7.2 Experimental Results

Table 3.1 shows the result from Exp. 1, where different programs are compared using

MSE and Q methodologies. From the table, it is evident that the visual representation of

different program source-codes have different image representation and hence a poten-

tial playground for pattern recognition using visual CNN and image processing method-

ologies. Fig. 3.7 shows the histograms of four different programs (Program 1, 2, 6 and
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Program 10: Execute power of 2 for 100,000 numbers iteratively and add the
result with itself in a separate variable on 4 different threads

function doubleSumOfPowerOf2() {
foreach i in 100,000 do

z = Compute i 2;
y = z;
x = y + z;

end
}
Execute doubleSumOfPowerOf2() on Thread 1;
Execute doubleSumOfPowerOf2() on Thread 2;
Execute doubleSumOfPowerOf2() on Thread 3;
Execute doubleSumOfPowerOf2() on Thread 4;

7) of Exp. 1, where the X-axis represents the gray level of the visual images of the cor-

responding program and Y-axis represents the number of pixels for the corresponding

gray level. Fig. 3.8 shows the Pixelator view of the differences in the visual images of

Program 1 and Program 2.

Fig 3.9 shows the Deep Dream images of three different classes (Compute, Memory &

Mixed) of program source-codes from Exp. 2, which proves that each class has different

features that could be extracted to differentiate between program source-code in a visual

manner. Fig. 3.2 shows the difference in activation of neurons of the VGG16 CNN when

1st Program and 2nd Programs are passed through the CNN model of Exp. 2.

In Exp. 3, after training the VGG19 CNN the CNN achieved a validation prediction

accuracy of 55.56% and when we passed the program source-code of Program 8, the

trained CNN was able to classify the program as Compute intensive with the confidence

probability of each class as shown in Table 3.2. From Table 3.2 we could also notice

that although the CNN classified Program 8 as compute intensive but the probability of

memory intensive is also high and that is because when the power of 2 is computed iter-

atively, the values are still stored in the memory and hence has moderately high memory

transaction as well. Table 3.3 shows the classification prediction for Program 9 and Table

3.4 shows the classification prediction for Program 10. While evaluating/validating the

trained CNN on Exynos 5422 the average time to classify each image of the respective

program was 0.83 seconds while consuming 5.34 watts (W) of power on an average.

In order to verify whether Program 8, 9 & 10 are Compute, Memory intensive and

Mixed workload respectively we used MRPI [Singh et al., 2013] methodology for cross-

validation. In [Singh et al., 2013] workloads are classified based on Memory Reads Per

Instruction metric (MRPI = L2 cache read refills
Instructions retired ). The workload is quantified by MRPI, where

high value of MRPI signifies low workload on the processing core and vice-versa. For
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Table 3.1: MSE and Q values of SoCodeCNN of different
programs compared to 1st Program

Frequency Levels MSE Q
1st Pr og r am 0.0 1.0
2nd Pr og r am 7864.280746459962 0.830200472952753
3r d Pr og r am 6436.206069946288 0.871193634636040
4th Pr og r am 8134.392196655273 0.833703260745370

Table 3.2: Classification probability of Program 8 for dif-
ferent
classes: Compute, Memory & Mixed

Class Name Pr obabi l i t y
Compute 0.5661
Memory 0.3085

Mixed 0.1253

Program 8, 9 & 10 MRPI values were 0.018, 0.031 and 0.028 on average respectively, prov-

ing the correctness of workload classified by our trained CNN model. Therefore, for our

chosen programs (Program 8, 9 & 10) we could notice that the CNN classifier is able

to predict the label for each program source-code with high probability. Fig. 3.10 shows

the classification (confidence in percentage) of some of the chosen popular benchmarks

from MiBench benchmark suits.

Figure 3.7: Histogram of source-code of 1st, 2nd, 3rd and 4th Program

From the aforementioned experiments we noticed that compared to conventional
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Figure 3.8: Differences in pixel of 1st and 2nd Program using Pixelator view

Layer: fc8 Features

(a) Compute intensive

Layer: fc8 Features

(b) Memory intensive

Layer: fc8 Features

(c) Mixed load

Figure 3.9: Deep Dream Images of three different types of program source-codes: Com-
pute, Memory & Mixed
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Table 3.3: Classification probability of Program 9 for dif-
ferent
classes: Compute, Memory & Mixed

Class Name Pr obabi l i t y
Compute 0.0774
Memory 0.8236

Mixed 0.0990

Table 3.4: Classification probability of Program 10 for
different
classes: Compute, Memory & Mixed

Class Name Pr obabi l i t y
Compute 0.0071
Memory 0.1339

Mixed 0.8590

Figure 3.10: Classification of MiBench [Guthaus et al., 2001] benchmark suits (Bench-
mark vs Confidence in % for a specific class)

methodologies [Taylor et al., 2017, Allamanis et al., 2018], where skilled human is re-

quired to extract features from program source-code to determine whether a program

is compute intensive or memory intensive or mixed, our approach is able to avoid such

manual feature extraction and still able to classify programs into their corresponding

classes accurately in an automated manner using visual based CNN algorithm.
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(a) Grad-Cam of Pro-
gram 10

(b) Grad-Cam of SHA benchmark

Figure 3.11: Grad-Cam visualization

3.7.3 Where the CNN is looking

In order to verify whether the VGG19 CNN of Exp. 3 is extracting the correct features to

be able to predict the type of the application (program) Grad-Cam [Selvaraju et al., 2017]

was utilized to visualize which area of the program-source code image is the model fo-

cusing on to make a decision (predict). In Grad-Cam the visual-explanation of decision

made by the CNN model is provided by using the gradient information flowing into the

last convolutional layer of the CNN model to understand the importance of each neuron

for a decision made.

When Grad-Cam was utilized for classification of Program 10 and SHA benchmark

application of MiBench by CNN we got Fig. 3.11.a and Fig. 3.11.b respectively to notice

which regions are highlighted, reflecting the regions focused by the CNN to make the

prediction decision. In Fig. 3.11.a and Fig. 3.11.b the regions highligted as red are the

most important feature-extraction regions by the CNN, whereas the yellow regions are

less significant and the blue ones are the least significant regions influencing the predic-

tion decision.

When we referred back the red-highlighted regions of Fig. 3.11.a and Fig. 3.11.b we

can notice that the CNN is focusing on the code for separate thread executions of Pro-

gram 10, and parts of the functions named sha_transform and sha_final of SHA bench-

mark of MiBench. Upon inspecting Grad-Cam visualization of Program 10 and SHA

benchmark it re-instated our confidence in the performance of the CNN in order to

make a prediction decision since the aforementioned code regions in those programs

are actually the important code-regions which are required to deduce the type of the

application.
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3.8 Application of SoCodeCNN in optimizing
power consumption using DVFS on CPU

To prove the efficacy of utilizing SoCodeCNN we use the CNN model from the Exp. 3

mentioned in Section 3.7.1 to develop an automated power management agent, which

uses the CNN model to decide the operating frequency of the processing elements (CPU)

by performing DVFS based on the type of the program being executed on the computing

system. To implement the automated power management agent we chose Odroid XU4

[odr, b] development board (see Fig. 3.13), which employs the Samsung Exynos 5422

MPSoC platform. The Exynos 5422 MPSoC is used in several modern Samsung smart-

phones and phablets including Samsung Galaxy Note and S series devices.

Figure 3.12: Odroid XU4 [odr, b] MPSoC block diagram highlighting major components

3.8.1 Hardware & Software Infrastructure

Nowadays heterogeneous MPSoCs consist of different types of cores, either having the

same or different instruction set architecture (ISA). Moreover, the number of cores of

each type of ISA can vary based on MPSoCs and are usually clustered if the types of

cores are similar. For this research, we have chosen an Asymmetric Multicore Proces-

sors (AMPs) system-on-chip (AMPSoC) [Dey et al., 2019e], which is a special case of het-

erogeneous MPSoC and has clustered cores on the system. Our study was pursued on

the Odroid XU4 board [odr, b], which employs the Samsung Exynos 5422 [exy, a] MPSoC

(as shown in Fig. 3.12 and Fig.3.13.b) and is popularly used in Samsung mobile devices,

especially Samsung Galaxy S5. Exynos 5422 MPSoC is based on ARM’s big.LITTLE tech-

nology [arm, ] and contains cluster of 4 ARM Cortex-A15 (big) CPU cores and another of

4 ARM Cortex-A7 (LITTLE) CPU cores, where each core implements the ARM v7A ISA.
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(a) Odroid XU4 in action

(b) Exynos 5422 MPSoC on Odroid XU4 development board

Figure 3.13: Odroid XU4 development board and Exynos 5422 MPSoC

56



This MPSoC provides dynamic voltage frequency scaling feature per cluster, where the

big core cluster has 19 frequency scaling levels, ranging from 200 MHz to 2000 MHz with

each step of 100 MHz and the LITTLE cluster has 13 frequency scaling levels, ranging

from 200 MHz to 1400 MHz, with each step of 100 MHz. Additionally, each core on

the cluster has a private L1 instruction and data cache, and a L2 cache, which is shared

across all the cores within a cluster.

Since Odroid XU4 board does not have an internal power sensor onboard, hence

an external power monitor [odr, a] with networking capabilities over WIFI is used to

take power consumption readings. Although the ARM Cortex-A7 (LITTLE) CPU cores on

Odroid XU4 do not have temperature sensor but there are individual temperature sen-

sors on each of the ARM Cortex-A15 (big) CPUs and a temperature sensor on the GPU.

Our intelligent power management agent approach is scalable and works for hetero-

geneous cluster cores. We have run all our experiments on UbuntuMate version 14.04

(Linux Odroid Kernel: 3.10.105) on the Odroid XU4.

3.8.2 DVFS on CPU utilizing SoCodeCNN in MPSoCs

Source 
Code of 

Application

Process IRPre-process Source-Code

IR Generator
Code 

Cleanser
Image 

Creator

Application 
(Appi)    

Source 
Code of 

Appi

SoCodeCNN
Program 
Classifier

DVFS

Figure 3.14: Block diagram of power management agent, APM, using SoCodeCNN

Fig. 3.14 shows the block diagram of the implementation of the automated power

management agent. When an instance of an application (Appi ) is executed, the pro-

gram source code of the application is fed to the SoCodeCNN to create the image rep-

resenting the platform-independent IR code of Appi , which will be used by the CNN

model (called as "Program Classifier" in Fig. 3.14) for classification purpose. If Appi

has been executed before on the platform, then the image representation created by

SoCodeCNN during its first execution is already saved on the memory and used only for

classification purpose for future executions. The Program Classifier will classify based

on what type of application is being executed at the moment such as Appi is of com-

pute intensive or memory intensive or mixed load, and DVFS module is used to set the

operating frequency of the CPUs of the Odroid as required by the type of executing ap-

plication.
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We refer to this proposed automated power management agent as APM. In the APM

implementation we specify if an application is compute intensive then the maximum

operating frequency of the big CPU cluster of the Odroid should be set to 2000 MHz and

for the LITTLE cluster’s frequency to 1400 MHz, whereas if the application is memory

intensive then the maximum operating frequency of the big cluster to be set to 900 MHz

and the LITTLE cluster’s frequency to 600 MHz. If the executing application is of mixed

workload, then the maximum operating frequency of the big cluster to be set to 1300

MHz and the LITTLE cluster’s maximum operating frequency to 1100 MHz. Through

our experiments we have found that if an application is memory intensive or mixed load

then most of the time running the CPUs at high frequency only wastes energy while not

utilizing the maximum cycles per second capacity of the CPUs. Hence, we chose the as-

sociated operating frequencies as mentioned earlier through several experimentations.

In the next sub-section, we show the power consumption difference between execu-

tion of Program 9 and Program 10 on UbuntuMate’s (Linux) ondemand governor and

on our APM implementation in a graphical representation. We also evaluated the differ-

ence in terms of power consumption while executing several benchmark applications of

MiBench using Linux’s ondemand, performance and APM.

Most MPSoCs in modern smartphones and wearables come equipped with limited

hardware performance counters compared to general purpose computing systems such

as PCs & workstations, and the access to the hardware performance counters could also

vary from the device model to another. Implementation of the automated power man-

agement agent (APM) is introduced to provide an alternative approach to perform DVFS

without the need of accessing hardware performance counters on mobile computing

systems.

3.8.3 Results

Fig. 3.15 and Fig. 3.16 show the power consumption over time of execution of Program

9 and Program 10 respectively while executing on Linux’s ondemand governor and on

our APM. In the figures, the Y axis is denoted by power consumption in watts (W) vs

time interval in seconds. In Fig. 3.15, using APM we are able to save 49.52% of power on

average over the time period (APM power consumption: 1.372 W vs ondemand power

consumption: 2.718 W). Using APM we only sacrificed 1.8 secs of execution time com-

pared to ondemand’s execution time of 58.2 secs while achieving 49.52% more power

consumption reduction. In Fig. 3.16, using APM we are able to save 43.48% of power on

average (APM power consumption: 1.716 W vs ondemand power consumption: 3.036
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Figure 3.15: Power consumption of executing Program 9 on ondemand vs APM

Figure 3.16: Power consumption of executing Program 10 on ondemand vs APM

W). Using APM we only sacrificed 3.1 secs of execution time compared to ondemand’s

execution time of 80.4 secs while achieving 43.48% more power consumption reduction.

As Program 9 is classified as memory intensive (refer to Table 3.3) in the Program

Classifier module of APM, the APM forces the big CPU cluster and the LITTLE CPU clus-

ter to operate at the maximum frequency of 900 MHz and 600 MHz respectively. This

means that for memory intensive applications such as Program 9 APM forces the big

CPU cluster to operate within 200 MHz to 900 MHz and forces the LITTLE CPU cluster

to operate within 200 MHz to 600 MHz. On the other hand, the ondemand scheduler is

capable of scaling the frequency of the big CPU cluster from 200 MHz to 2000 MHz and

scaling the frequency of the LITTLE cluster from 200 MHz to 1400 MHz based on the

performance demand of the executing application/program. Because APM only allows

scaling of the frequency of the big and LITTLE clusters for limited frequency levels, APM

enables more power saving compared to ondemand scheduler. This is evident from Fig.
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Figure 3.17: Power consumption of executing Program 10 on ondemand vs APM

3.15, where we can observe that while executing Program 9 on ondemand scheduler, the

power consumption peaks (up to 5.8 W) and drops downs (to 1 W) repeatedly through-

out the execution of the program. Whereas, while executing Prog. 9 on APM, the power

consumption remains more stable and varies between 0.9 W to 2.4 W throughout the

execution of the program.

Similarly, while executing Program 10 on APM, which classifies the program as mixed

workload (refer to Table 3.4), then the maximum operating frequency of the big cluster

is set to 1300 MHz and the LITTLE cluster’s maximum operating frequency to 1100 MHz

by the APM. Thus, enabling more power saving compared to ondemand scheduler (as

shown in Fig. 3.16).

When we evaluated the power consumption of executing several benchmark appli-

cations of MiBench using ondemand, performance governors and APM, we noticed that

APM is able to achieve more than 10% power saving on average over the time period

compared to ondemand and performance while sacrificing only less than 3% of per-

formance on average in terms of execution time. Fig. 3.17 shows the average power

consumption of different benchmarks while using ondemand, performance and APM.

In Fig. 3.17 the X-axis denotes the name of the benchmark and the Y-axis denotes the

average power consumption.

It should also be noted that when a new application is executed on the platform, the

average time taken to create the visual image from the source-code of the application

using SoCodeCNN is less than 2 seconds (depending on the size of the program). Image

creation is only performed once if the new application is executed for the first time using

60



APM, otherwise, the inference of the image for classification and setting the operating

frequency appropriately takes less than 150 milliseconds.

3.8.4 Advantage of SoCodeCNN based DVFS

In the methodology proposed in [Taylor et al., 2017], the authors define a machine learn-

ing based system which selects the appropriate processing elements and the desired

operating frequency of the processing elements by extracting the features from the pro-

gram source code and then evaluating the feature values by a predictor. However, the

features from the program source code has to be manually selected by skilled people

having experience with the programming language framework. In another study [Cum-

mins et al., 2017], the authors utilize similar feature extraction methodology from source

code to be fed to a DNN model to make decisions and this approach also requires the

intervention of a skilled person to perform the manual feature extraction. On the other

hand, studies [Singh et al., 2013, Reddy et al., 2018, Wachter et al., 2017] which include

hybrid scheduling/resource mapping where the methodology is partly dependent on

offline and online training of the executing application to decide the appropriate pro-

cessing elements and their operating frequencies, also has its own limitations. In case a

new application is being executed on the device, we need to perform an offline training

on this new application in order to achieve an improvement on the main objective of

scheduling/resource mapping to optimize performance, power efficiency, etc.

From the application of APM using SoCodeCNN to use DVFS of the processing ele-

ments we could notice that we do not require a skilled person to extract features man-

ually from the source code to be fed to the software agent to decide the operating fre-

quency of the system. At the same time in case a new application is installed and exe-

cuted on the system then the APM is capable of classifying the application using SoCodeCNN ’s

image conversion methodology and trained CNN model, and then appropriately decid-

ing the operating frequency of the processing elements based on the type of applica-

tion being executed. The most advantage of utilizing SoCodeCNN is that we can design

power and thermal management agents which are automated in nature with an over-

head of at most 150 ms during classification and setting the operating frequency.

3.9 Discussion

Although using SoCodeCNN we are able to classify program applications automatically

into Compute intensive, Memory intensive and Mixed workload to perform DVFS on
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CPUs, applications do not just rely on CPUs to meet the performance requirements. Of-

ten times, portions of the program of the executing application could heavily rely on

other PEs such as GPUs, which could potentially affect the performance of the execut-

ing application. However, given the current state of sophistication of the SoCodeCNN

approach it is not able to classify program applications in a fine-grained level where it

could deduce whether the application requires more CPU or GPU or other types of PEs.

Henceforth, this calls for approaches where DVFS could be performed on CPU and GPU

automatically.

3.10 Summary

In this chapter, we have proposed SoCodeCNN (Program Source Code for visual CNN

classification) capable of converting program source-codes to visual images such that

they could be utilized for classification by visual CNN based algorithm. Experimental

results also show that using SoCodeCNN we could classify the benchmarks from PAR-

SEC, SPLASH-2, and MiBench in a completely automated manner and with high pre-

diction accuracy for our chosen test cases. We also demonstrate an approach to use

SoCodeCNN to classify programs and then perform DVFS on CPUs in mobile MPSoC to

optimize power consumption.

Moreover, most modern smartphones that utilize MPSoC, come equipped with touch

screen enabled display, which requires other types of PEs than CPU such as GPU to ex-

ecute the workloads. In the next chapter, we propose a novel methodology to perform

DVFS on CPU and GPU to undertake the workloads executed on modern smartphones.
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Chapter 4

Performing DVFS on CPU and GPU

In the Chapter 3, we presented a methodology to perform DVFS on CPU of the mobile

MPSoC to optimize power consumption on a mobile platform based on the type of exe-

cuting application. However, for smartphones, apart from reduced power consumption,

thermal efficiency and Quality of Service (QoS) are important factors as well. Moreover,

most of the applications do not just rely only on CPUs to meet the performance require-

ment but rely on CPUs and GPUs to provide a more enriched visual experience to the

user. Most smartphones come equipped with MPSoC, which allows DVFS capability on

both CPU and GPU to cater for performance requirement of the executing applications.

On such smartphones the mobile user’s usage behaviour changes throughout the day

and the desirable QoS could thus change for each session. In this chapter, a QoS aware

agent is proposed to monitor the mobile user’s usage behaviour to find the target frame

rate, which satisfies the desired user’s QoS, and applies reinforcement learning based

DVFS on the CPU-GPU to satisfy the frame rate requirement.

4.1 Prologue to Second Contributory Chapter

This contributory chapter is based on the following article along with my personal con-

tribution to this article.

4.1.1 Article Details

Somdip Dey, Amit Singh, Xiaohang Wang, and Klaus McDonald-Maier. "User Interaction

Aware Reinforcement Learning for Power and Thermal Efficiency of CPU-GPU Mobile

MPSoCs." In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE),

pp. 1728-1733. IEEE, 2020.
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Personal Contribution In The Article: Conceptualization, Somdip Dey; method-

ology, Somdip Dey; software, Somdip Dey; validation, Somdip Dey; formal analysis,

Somdip Dey; investigation, Somdip Dey; resources, Somdip Dey; data curation, Somdip

Dey; writing–original draft preparation, Somdip Dey; writing–review and editing, Somdip

Dey and Amit Singh and Xiaohang Wang and Klaus McDonald-Maier; visualization, Somdip

Dey; supervision, Somdip Dey; project administration, Somdip Dey.

4.1.2 Media coverage

Given the popularity of the proposed methodology in this article, it is covered by media

(news) outlets as follows.

1. “Smartphones could get smarter by learning user’s habits", University of Essex. Ar-

ticle link

2. “Smartphones get smarter with Essex innovation", Business Weekly. Article link

3. “Future smartphones ‘will prolong their own battery life by monitoring owners’

behaviour’", The i news. Article link

4.2 Introduction & Motivation

Due to fast advancement in chip integration technology in the past couple of decades,

we can see an increased adaptation of heterogeneous multi-processor System-on-Chip

(MPSoC) in Edge devices, especially in smartphones and tablets. Market research per-

formed by eMarketer [eMa, ] shows that in 2018 mobile users in the USA spend 4 hours

16 minutes on an average on in-apps and mobile web with the availability of the mobile

Internet on their smartphones and tablets. This includes an average of 1 hour 56 min-

utes on the top 5 social media platforms: Youtube, Facebook, Snapchat, Instagram and

Twitter [med, ]. Another market research by Deloitte US and Rescue Time [del, , res, ]

shows that an average person picks-up/look at their phones 52 times during their work-

day, where 70% of the sessions are less than 2 minutes, 25% of the sessions lasting be-

tween 2 to 10 minutes and 5% of the sessions prolonged more than 10 minutes. Even

the duration of the user picking-up/looking at their Edge device every time varies from

user to user and hence, making the sessions stochastic in nature and furthermore mak-

ing existing resource management (DPTM) techniques inefficient for real-world Quality

of Service driven applications on Edge devices.

64

https://www.essex.ac.uk/news/2020/07/21/smartphones-could-get-smarter-by-learning-user-habits
https://www.essex.ac.uk/news/2020/07/21/smartphones-could-get-smarter-by-learning-user-habits
https://www.businessweekly.co.uk/news/academia-research/smartphones-get-smarter-essex-innovation
https://inews.co.uk/news/technology/future-smartphones-prolong-battery-life-monitoring-behaviour-558689


000000001

62 70

1813

5143

15
28
35

239

61

17

54 52
50

50

1821

45
444752

5963
36

36

4 3 23 2

5446

15
6

27

3
15

25
6

15

34 34

2

51

32

57

31

52432

22

223

45

3235

65

19
2814

00210000000000000 0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

0

50

100

150

200

250

300

350
1 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

20
7

21
6

22
5

23
4

24
3

25
2

26
1

27
0

27
9

schedutil FPS Freq. B. sched Freq. L. sched

FP
S

Fr
eq

ue
nc

y 
(G

Hz
)

Time (sec)

Home Facebook Spotify

Figure 4.1: FPS generation, operating frequency of big and LITTLE CPUs in Samsung
Note 9 while using home screen, Facebook and Spotify apps during a session on schedu-
til governor

Fig. 4.1 shows the varying frames per second (FPS) generation (frame rate denoted as

schedutil FPS in the primary vertical axis) while using home screen, facebook and spotify

apps on Samsung Galaxy Note 9 [gal, ], which employs Exynos 9810 MPSoC [exy, b], over

a 5 minutes of session. Frame rate is the frequency at which a new frame is rendered.

In Fig. 4.1, FPS is recorded and shown every 3 seconds to provide a holistic view on the

variation of frame rate during the session, especially the frame rate could vary even for

one application based on the user’s usage behaviour. In Fig. 4.1, the secondary vertical

axis shows the operating frequency of the big and LITTLE CPUs of Exynos 9810 MPSoC,

where the Freq. B. sched denotes the operating frequency of the big cores, and Freq. L.

sched denotes the operating frequency of the LITTLE cores. It should be kept in mind

that the max operating frequency of the big cores is capped to 1794 MHz by vendor

(Samsung) by default to reduce the overall power consumption of the MPSoC.

User Display/UI

Application with 
functions/ instructions

Interact

Updated

View

Triggers 
action/function

Update

View

Figure 4.2: Interaction between the user and an app on a smartphone happens through
display/UI
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User experience or Quality of Service (QoS) of an application on an Edge device, es-

pecially smartphones, is often a measure of their frame rates. On modern smartphones,

the user interacts with the display/UI which then triggers an event (action), which is

again tied to some function(s) or instructions of the application with which the user is

interacting [Johansson et al., 2016, Nilo et al., 2016], as shown in Fig. 4.2. Contrary to

popular belief that the QoS of games or media applications, such as videos, are the only

applications where the user experience is evaluated through their frame rates, the user’s

experience of any application on a modern smartphone with a touch screen display is

measured with the frame rate as well. As the frame rate increases, the display experi-

ence tends to appear smoother and more fluid to the human eye and hence, very high

frames-per-second (FPS) is often translated to a much richer experience for the user.

Typically most commercial mobile devices render a maximum of 60 FPS to match their

display’s refresh rate of 60 Hz. A display refresh rate is the frequency at which the display

is updated. Although at the moment there are some commercial devices which have

higher display refresh rate such as 90 Hz and 120 Hz, however, 60 Hz display refresh rate

continues to be the most popular mobile display refresh rate available in the majority of

the devices.

The refresh rate and the frame rate are synchronized to update the display of the

device through the process of Vertical Synchronization (VSync) [Johansson et al., 2016].

On the Android OS, 3 buffers consisting of 1 front buffer and 2 back buffers are used for

VSync. CPU-GPU renders the new frames in the back buffers while the display shows

the content of the front buffer. When a new frame is rendered in the back buffer, af-

ter each VSync the content of the back buffer is pushed to the front buffer and hence,

the display outputs the front buffer content to the user. Since most displays have a 60

Hz refresh rate, the VSync is generated every 16.67 ms for such devices. The display is

only refreshed on each VSync regardless of whether new frames are generated within

the VSync period. When CPU-GPU fails to produce a frame within the VSync period,

the front buffer is not updated and the display continues to render the previous frame,

which results in a drop of the frame (frame drop) and hence, hindering the user experi-

ence. These frame drops lead to lag or stutter and hence, reduced QoS is achieved. Ev-

ery mobile application on smartphones is a dynamic application consisting of periodic,

aperiodic and sporadic tasks [Pillai and Shin, 2001], where the load of the application

constantly varies based on the user interaction and the mechanics of the application

itself.

For example, the primary vertical axis of Fig. 4.1 shows that for the same (intra-)

mobile application (Facebook or Spotify) different FPS is generated at the different time
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period during the session based on varied interaction between the user and the applica-

tion through the display/UI. If we take a closer look at the operating frequency of the big

and LITTLE CPU cores (as shown in the secondary vertical axis of Fig. 4.1) of the Exynos

9810 MPSoC while using the applications (Facebook or Spotify) we could notice that the

operating frequency remains relatively very high yet generating less FPS at certain oc-

casions (as is evident in Fig. 4.1). This phenomenon is more evident while using the

Spotify app during the session where the FPS drops close to 0 yet the operating frequen-

cies of the big and LITTLE cores are very high, which results in high power consumption

and operating temperature of the device.

Several power and thermal management schemes [Pathania et al., 2014, Sahin and

Coskun, 2015,Shafik et al., 2016,Peters et al., 2016,Bhat et al., 2018,Dey et al., 2019a,Dey

et al., 2019b, Isuwa et al., 2019, Dey et al., 2019e, Dey et al., 2019f, Dey et al., 2019c] for

power and thermal efficiency while considering frame rate or QoS have been proposed

over the years. However, neither of the techniques tries to improve power and thermal

efficiency by taking user’s interaction with the mobile into account to cater for improved

QoS. Moreover, most of the existing studies focus on maximizing performance per watt

(PPW ), however, for a mobile platform reducing power consumption as well as the tem-

perature of the device is very important while catering for the performance requirement

and trying to maximize PPW is not enough for such platform. To overcome this limita-

tion in this chapter we also introduce a new metric to incorporate performance, power

consumption and thermal behaviour of the mobile device.

We propose a reinforcement learning based intelligent agent, called Next (Next gen-

eration user interaction aware DVFS), that learns the user’s usage pattern of the mobile

applications and then utilizes DVFS to save power and reduce the temperature during

the mobile usage session while catering for the QoS required by the user. Reinforcement

learning is a type of machine learning approach where the software agent takes actions

in a system environment in order to maximize the cumulative reward [Sutton and Barto,

2018].

In order to determine the desired QoS for the user for each session, we also define

a new metric, which is optimized by Next to improving the reward generated using re-

inforcement learning. Fig. 4.3 shows the average power consumption in the primary

vertical axis and peak temperature of the big CPUs of Note 9 platform in the secondary

vertical axis while utilizing the Next technique for a similar user session using home

screen, Facebook and Spotify application. For the similar session using the Next tech-

nique we are able to save 41.88% more power (refer to primary vertical axis of Fig. 4.3)
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on an average over the time period when compared to default schedutil governor of An-

droid, whereas we are also able to reduce the peak temperature of the big CPU cores by

21.02% (refer to secondary vertical axis of Fig. 4.3) compared to the temperature of the

big cores while on schedutil governor. In mobile MPSoC, the big CPU cores consume

the most power [Zhang et al., 2018] and are also the focus of hot spots on the chip, and

hence in this case, we have focused on the thermal behaviour of the big cores for the

comparative study.
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Figure 4.3: Power consumption and temperature of big CPUs on Samsung Note 9 while
using home screen, Facebook and Spotify apps during a session on schedutil vs Next

4.2.1 Contributions

The concrete contributions of this chapter are the following.

• We define a new metric to optimize QoS based on power consumption and peak

temperature obtained.

• We explore DVFS in mobile CPU and GPU based on user’s interaction behaviour

using a software agent based on reinforcement learning.

• We implement our power and thermal management technique - Next - in the ap-

plication layer of the Android platform on Galaxy Note 9 smartphone utilizing

Exynos 9810 MPSoC, and evaluate its efficacy with the latest popular applications

from the Google Play store.

• We also show the scalability of our proposed approach by implementing it in the

Odroid XU4 development platform and provide a comparative study with the state-

of-the-art mechanisms to show its efficacy.

The rest of the chapter is organized as follows. In Sec. 4.3, we discuss the hard-

ware and software platform used for our study as well as the problem that this study
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focuses on optimizing. In Sec. 4.4, we discuss the effect of DVFS on CPU and GPU to-

wards power consumption and thermal behaviour as a motivational case study for the

proposed methodology. In Sec. 4.5, we discuss the proposed methodology and its im-

plementation. The efficacy of the proposed methodology, Next, is showcased in Sec. 4.6

while Sec. 4.7 shows the scalability of Next in other devices. Finally, Sec. 4.8 discusses

the future scope of this research and Sec. 4.9 summarizes the chapter.

4.3 System, Metric and Problem Formulation

In this section, we explore the hardware & software infrastructure on which our pro-

posed method is initially experimented. We also define the metric and problem formu-

lation that form the foundation of our proposed approach.

4.3.1 Hardware & Software Infrastructure

We chose to execute our experimental evaluation on Galaxy Note 9 [gal, ], which is one

of the latest mobile device from Samsung and utilizes the Exynos 9810 MPSoC [exy, b].

The block diagram of Exynos 9810 is provided in Fig. 4.4. Exynos 9810 MPSoC has two

CPU clusters, one for big CPU cores consisting of 4 Mongoose 3 CPU cores, and the other

cluster for LITTLE CPU cores consisting of 4 Cortex A-55 CPU cores. The Mongoose 3

CPU cores allow cluster wise DVFS and has 18 frequency scaling levels ranging from 650

MHz to 2704 MHz (2704 MHz, 2652 MHz, 2496 MHz, 2314 MHz, 2106 MHz, 2002 MHz,

1924 MHz, 1794 MHz, 1690 MHz, 1586 MHz, 1469 MHz, 1261 MHz, 1170 MHz, 1066

MHz, 962 MHz, 858 MHz, 741 MHz, 650 MHz). However, at the OS level 4 Mongose

3 CPU cores can only be operated between 1794 MHz and 650 MHz as the rest of the

frequencies are vendor locked. Similarly, the LITTLE Cortex-A55 CPU cores allow cluster

wise DVFS and has 10 frequency scaling levels ranging from 455 MHz to 1794 MHz (1794

MHz, 1690 MHz, 1456 MHz, 1248 MHz, 1053 MHz, 949 MHz, 832 MHz, 715 MHz, 598

MHz, and 455 MHz). Exynos 9810 MPSoC also hosts ARM Mali-G72 MP18 GPU, which

has 18 cores operating at a frequency range of 260 MHz to 572 MHz with 6 frequency

scaling levels (572 MHz, 546 MHz, 455 MHz, 338 MHz, 299 MHz and 260 MHz). There

are 5 thermal sensors on the device, out of which one is placed on the big CPU cluster,

and one virtual sensor1 is used for overall device temperature.

The Galaxy Note 9 was running on Android 9 (Pie) [and, ] OS utilizing Linux kernel

version 4.9.59, which has only one governor named schedutil based on Energy Aware

Scheduling (EAS) [eas, ].

1The overall temperature of the device is computed using the manufacturer’s proprietor formula.
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Figure 4.4: Exynos 9810 [exy, b] MPSoC block diagram highlighting major components

4.3.2 Metric and Problem Definition

The main focus of this work is to meet QoS while optimizing power consumption and

peak thermal behaviour based on the user’s interaction with the application. Most stud-

ies available at the moment focus on Performance per watt, however, there is no pro-

vision for thermal behaviour in the metric. Therefore, in this chapter we define a new

metric, which incorporates both power consumption and peak temperature to evaluate

the performance at a given time period. We call this metric performance per degree watt

(PPDW), which is represented by the Eq. 4.1. In Eq. 4.1, PPDWi is the performance per

degree watt at a time period i , F PSi , Pi and Ti are the frames-per-second, power con-

sumption and temperature respectively at that time, and Ta is the ambient temperature.

PPDWi = F PSi

∆T ×Pi
,where ∆T = Ti −Ta (4.1)
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The main objective is to minimize the value of PPDW, however, the optimum mini-

mal value, which is PPDWdesi r ed , needs to be between PPDWwor st and PPDWbest (re-

fer to Eq. 4.4), which are defined as:

PPDWwor st = F PSl east

(Tmax −Ta)×Pmax
, (4.2)

and

PPDWbest =
F PSmax

(Tleast −Ta)×Pleast
(4.3)

PPDWwor st is obtained when FPS generated is least (F PSleast ) while the maximum

power (Pmax) is consumed and the device reaches the maximum peak temperature (Tmax)

allowed on the device (as in Eq. 4.2); for example, generated FPS is 1 while executing all

CPU and GPU cores at their corresponding maximum frequencies. On the other hand,

the goal is to achieve the highest FPS possible with the least power consumed and least

peak temperature achieved, which is denoted by PPDWbest equation (Eq. 4.3), where

F PSmax is the maximum FPS, Tl east is the least peak temperature achieved and Pl east is

the least power consumed; for example, PPDWbest is obtained when 60 FPS is achieved

while consuming least power with no rise in temperature. Fig. 4.5 shows the general

trend of PPDW value as the FPS scales along with power consumption and peak temper-

ature of the big CPUs achieved on Exynos 9810 MPSoC while executing Lineage 2 Rev-

olution mobile game, which is a very computationally intensive game. In Fig. 4.5, the

PPDW values (for FPS: 0, 1, 10) marked by red colour are the worst values achieved for

the corresponding FPS while consuming the most power and achieving the maximum

peak temperature of the big CPUs.
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Figure 4.5: PPDW value trend as the FPS, peak temperature of big CPUs and power con-
sumption scale accordingly
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opti mi ze(PPDW ) → PPDWbest ≥ PPDWdesi r ed > PPDWwor st (4.4)

4.4 Motivational Case Study: Effect of DVFS on CPU & GPU
in Note 9

Before we move into discussing our proposed methodology - Next, we need to under-

stand how DVFS on the CPU & GPU in a mobile MPSoC such as Exynos 9810 that could

affect the power consumption, thermal behaviour and generated FPS. To understand

the effect of DVFS on CPU & GPU in Exynos 9810 MPSoC, a mobile application named

‘EOptomizer Lite - Note 9’ [eop, ] is developed, which makes it easier for the user of the

app to select the operating frequency of the LITTLE CPUs, big CPUs and GPUs on the

MPSoC easily using drop-down list. Usually, majority of the researchers in this field of

study write automated executable scripts with specified operating frequencies for the

CPUs and GPUs to measure the effect of DVFS, and then update and execute the script

as DVFS need to be performed with different operating frequencies. In comparison,

‘EOptomizer Lite - Note 9’ mobile app is developed to provide an easy to use GUI based

interface for the researchers to select the desired operating frequency for the CPUs and

GPUs and then monitor/recording different metrics such as power consumption, ther-

mal behaviour, generated FPS easily.

Fig. 4.6 shows the interface of the ‘EOptomizer Lite - Note 9’ mobile app [eop, ].

When the app loads for the first time (as shown in Fig. (a)) it shows “Default" as a label

hinting that the OS is using the default governor, which is schedutil in Exynos 9810 MP-

SoC of the Galaxy Note 9, and run the CPUs and GPUs on default operating frequencies.

The default schedutil can scale frequencies of the LITTLE CPUs, big CPUs and GPUs

from 0.455 GHz to 1.794 GHz, 0.65 GHz to 1.794 GHz and 0.26 GHz to 0.572 GHz re-

spectively. Fig. (a) shows the drop-down list for each of the LITTLE and big CPU and

GPU clusters respectively and an “Optimization" button. When the desired operating

frequency is selected for each of the CPU and GPU clusters and the “Optimization" but-

ton is pressed (as shown in Fig. (b)), in the background, the mobile app sets the maxfreq

(maximum operating frequency) of each cluster according to the selected operating fre-

quencies while recording the different metrics of the system such as power consump-

tion, thermal behaviour and generated FPS in the background. The label on the app

is also updated to “Optimization On " to hint that the maxfreq for the CPUs and GPUs

are in fact set to the selected operating frequencies. This mobile app is developed using

Flutter open-source framework [flu, ], which is popularly used to develop cross-platform
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Figure 4.6: Graphical interface of ‘EOptomizer Lite - Note 9’ mobile app [eop, ]. (a) shows
the app UI when CPUs & GPUs operate on default frequencies of the schedutil governor;
(b) shows the app UI when the CPUs & GPUs operate at a chosen frequency for LITTLE
& big CPUs and GPUs respectively

applications for Android, iOS, Linux, macOS, Windows, Google Fuchisa and the web

from a single codebase. Note that the ‘EOptomizer Lite - Note 9’ mobile app can only be

executed in rooted Android device, where the user has privileged root access.

Given, Exynos 9810 MPSoC has 11 operable frequency scaling levels for the big CPU

cores, 10 operable frequency scaling levels for the LITTLE CPU cores and 6 operable

frequency scaling levels for the GPU cores, the design space exploration taking all the

operable frequencies into consideration is large. To understand the effect of DVFS on

CPU and GPU in the Exynos 9810 MPSoC, the proposed mechanism from [Dey et al.,

2019e] was used to select certain operating frequencies of the CPU and GPU cores to

evaluate the difference in power consumption, thermal behaviour and generated FPS for

those selected frequencies on the system. This reduces the exploration time for design

space exploration as the number of frequencies-to-select reduces drastically.

For our experimentation, the following frequencies for LITTLE CPUs, big CPUs and
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GPUs as a group were selected such that we can compare the system metrics for those

selected maximum operating frequency groups.

• Default: The maximum operating frequency of the LITTLE CPUs, big CPUs and

GPUs are set to 1.794 GHz, 1.794 GHz and 0.572 GHz respectively.

• HH: The maximum operating frequency of the LITTLE CPUs, big CPUs and GPUs

are set to 1.69 GHz, 1.69 GHz and 0.572 GHz respectively.

• MH: The maximum operating frequency of the LITTLE CPUs, big CPUs and GPUs

are set to 1.053 GHz, 1.17 GHz and 0.572 GHz respectively.

• ML: The maximum operating frequency of the LITTLE CPUs, big CPUs and GPUs

are set to 0.832 GHz, 0.962 GHz and 0.572 GHz respectively.

• LL: The maximum operating frequency of the LITTLE CPUs, big CPUs and GPUs

are set to 0.455 GHz, 0.650 GHz and 0.572 GHz respectively.

• LL2: The maximum operating frequency of the LITTLE CPUs, big CPUs and GPUs

are set to 0.455 GHz, 0.650 GHz and 0.338 GHz respectively.

• LL3: The maximum operating frequency of the LITTLE CPUs, big CPUs and GPUs

are set to 0.455 GHz, 0.650 GHz and 0.26 GHz respectively.

The aforementioned maximum operating frequency groups (Default, HH, MH, ML,

LL, LL2 & LL3) were selected to execute Lineage 2 Revolution mobile game (referred to

as Lineage), Facebook app and Chrome web browser (referred to as Web Browser) on

the Galaxy Note 9 to understand the difference in metrics such as power consumption,

thermal behaviour and generated FPS. For each group of selected maximum operating

frequencies Lineage, Facebook app and Chrome web browser were executed for at least

3 minutes per session and for 3 times to get an average of the different metrics. Be-

tween each session the smartphone was put on sleep for at least 30 minutes and the

background processes on the device were also kept running to mimic the usage of a

real smartphone user. It was made sure that the brightness of the system was set to

50% without auto-brightness switched on and an ambient temperature of 21°was main-

tained using a controlled thermostat. As part of the experimentation, the following exe-

cution metrics on the system were recorded every 200 milliseconds: max temperature of

the big CPU cluster (denoted as Max. Temp. and measure in °C), average temperature

of the big CPU cluster (denoted as Avg. Temp. and measure in °C), average power con-

sumption of the system at the moment of executing applications (denoted as Avg. Pow.
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Now and measured in watts (W)), maximum operating frequency of the big CPU cluster

(denoted as Max freq. big and measured in GHz), mode of the operating frequency of

the big CPU cluster (denoted as Mode freq. big and measured in GHz), maximum oper-

ating frequency of the LITTLE CPU cluster (denoted as Max freq. LITTLE and measured

in GHz), mode of the operating frequency of the LITTLE CPU cluster (denoted as Mode

freq. big and measured in GHz), maximum operating frequency of the GPUs (denoted

as Max freq. gpu and measured in GHz), mode of the operating frequency of the GPUs

(denoted as Mode freq. gpu and measured in GHz), maximum of how busy the GPUs

were during the execution of the respective app (denoted as Max gpu busy and mea-

sured in %), mode of how busy the GPUs were during the execution of the respective

app (denoted as Mode gpu busy and measured in %), and mode of the generated FPS

during the execution of the respective app (denoted as Mode FPS). Note that mode of

the operating frequencies of the LITTLE and big CPU clusters were recorded to observe

which operating frequencies for the respective CPU clusters were running most of the

time during the execution of the respective app. For similar reason, mode of GPU busy

was recorded to understand how busy the GPU was most of the time during the session

and mode of the generated FPS was recorded to observe which FPS was generated most

of the time for the selected operating frequencies while executing the respective app.

Table 4.1: Different metrics for Lineage while executing on different operating frequency
groups - Default, HH, MH, ML, LL, LL2 & LL3

Lineage Max.
Temp.
(°C)

Avg.
Temp.
(°C)

Avg.
Pow.
Now
(W)

Max
freq.
big
(GHz)

Mode
freq.
big
(GHz)

Max
freq.
LIT-
TLE
(GHz)

Mode
freq.
LIT-
TLE
(GHz)

Max
freq.
gpu
(GHz)

Mode
freq.
gpu
(GHz)

Max
gpu
busy
(%)

Mode
gpu
busy
(%)

Mode
FPS

Default 68 58.94 7.89 1.794 1.469 1.794 1.794 0.455 0.26 54 29 60
HH 63 56.27 7.5 1.69 1.17 1.69 1.69 0.455 0.26 58 32 60
MH 60 55.58 5.59 1.17 1.17 1.053 1.053 0.338 0.26 66 29 60
ML 57 53.85 4.25 0.962 0.962 0.832 0.832 0.338 0.26 53 30 50
LL 49 47.07 3.95 0.65 0.65 0.455 0.455 0.455 0.26 41 28 40
LL2 47 45.92 3.57 0.65 0.65 0.455 0.455 0.338 0.26 85 57 30
LL3 46 44.43 3.21 0.65 0.65 0.455 0.455 0.26 0.26 85 61 30

Table 4.1, 4.2 and 4.3 show the aforementioned observed metrics while executing

Lineage, Facebook and Web Browser on the Galaxy Note 9 on the selected maximum

operating frequency groups (Default, HH, MH, ML, LL, LL2 & LL3). From the tables

one important observation is that for different mode FPS of executing apps, the selected

maximum operating frequency could drastically affect the average power consumption

& average temperature of the big CPUs. For example, in Table 4.1, for the Lineage app
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Table 4.2: Different metrics for Facebook while executing on different operating fre-
quency groups - Default, HH, MH, ML, LL, LL2 & LL3

Facebook Max.
Temp.
(°C)

Avg.
Temp.
(°C)

Avg.
Pow.
Now
(W)

Max
freq.
big
(GHz)

Mode
freq.
big
(GHz)

Max
freq.
LIT-
TLE
(GHz)

Mode
freq.
LIT-
TLE
(GHz)

Max
freq.
gpu
(GHz)

Mode
freq.
gpu
(GHz)

Max
gpu
busy
(%)

Mode
gpu
busy
(%)

Mode
FPS

Default 59 52.52 5.42 1.586 0.65 1.794 1.794 0.546 0.338 11 29 0
HH 55 50.97 5.14 1.69 0.65 1.69 1.69 0.572 0.546 18 1 0
MH 53 47.38 4.12 1.17 0.65 1.053 1.053 0.572 0.572 17 2 0
ML 48 46.44 3.95 0.962 0.65 0.832 0.832 0.572 0.572 16 3 0
LL 43 42.59 3.35 0.65 0.65 0.455 0.455 0.572 0.572 17 4 0
LL2 43 41.75 3.24 0.65 0.65 0.455 0.455 0.338 0.338 18 4 0
LL3 43 41.45 3.24 0.65 0.65 0.455 0.455 0.26 0.26 20 4 0

Table 4.3: Different metrics for Web Browser while executing on different operating fre-
quency groups - Default, HH, MH, ML, LL, LL2 & LL3

Web Browser Max.
Temp.
(°C)

Avg.
Temp.
(°C)

Avg.
Pow.
Now
(W)

Max
freq.
big
(GHz)

Mode
freq.
big
(GHz)

Max
freq.
LIT-
TLE
(GHz)

Mode
freq.
LIT-
TLE
(GHz)

Max
freq.
gpu
(GHz)

Mode
freq.
gpu
(GHz)

Max
gpu
busy
(%)

Mode
gpu
busy
(%)

Mode
FPS

Default 67 59.64 8.59 1.794 1.17 1.794 1.794 0.572 0.338 46 3 0
HH 67 59.06 8.7 1.69 1.69 1.69 1.69 0.572 0.572 63 6 0
MH 57 52.77 6.25 1.17 1.17 1.053 1.053 0.572 0.572 37 2 0
ML 54 51.01 5.67 0.962 0.962 0.832 0.832 0.572 0.572 27 3 0
LL 49 47.31 3.78 0.65 0.65 0.455 0.455 0.572 0.572 39 0 0
LL2 48 46.35 3.56 0.65 0.65 0.455 0.455 0.338 0.338 23 2 0
LL3 46 42.57 3.43 0.65 0.65 0.455 0.455 0.26 0.26 35 11 0

if the user’s interaction with the device during the session is 40 FPS then LL maximum

operating frequency group could be selected to operate the CPUs & GPUs to achieve

the desired 40 FPS goal. However, if the average power consumption of the system and

average temperature of the big CPU cluster are compared for these metrics while the

operating frequencies of CPUs & GPUs are set to Default maximum operating frequency

group then there is a power saving and temperature reduction of 49.93% and 20.13% re-

spectively. For Lineage, if the user’s session needed to generate the 30 FPS then LL3 max-

imum operating frequency group could be selected to operate the CPUs & GPUs. While

Lineage is operated on LL3 maximum operating frequency group then the power sav-

ing and reduction in temperature compared to Default maximum operating frequency

group are 59.31% and 24.61% respectively.

From table 4.2, we can also observe that for any selected operating frequency group

(Default, HH, MH, ML, LL, LL2 & LL3) while using Facebook the mode FPS generated is

76



always 0, so, to cater for the performance requirement of achieving the 0 FPS while try-

ing to reduce power consumption and temperature reduction, it is better to operate the

CPUs & GPUs at LL3 maximum operating frequency group instead. Therefore, for Face-

book if LL3 maximum operating frequency group is selected for the LITTLE & big CPU

cores and GPUs then there is a power saving and temperature reduction of 40.22% and

21.07% respectively compared to operating on Default maximum operating frequency

group. The same is true for the Web Browser as well (refer to table 4.3) if LL3 frequency

group is selected for the LITTLE & big CPU cores and GPUs then there is a power sav-

ing and temperature reduction of 60.07% and 28.62% respectively. From these analysed

data we could notice that power saving and temperature reduction could be significantly

different based on different maximum operating frequencies for the CPUs and GPUs.

These aforementioned sets of experiments motivated us to develop our proposed,

Next, methodology such that the approach is capable of understanding what is the de-

sired FPS, thermal behaviour and power consumption (as mentioned in the metric PPDWdesi r ed

in eq. 4.4) while the user interacts with the app and then set the operating frequencies

of the CPUs & GPUs accordingly.

4.5 Proposed Methodology: Next

In this section, we introduce our proposed approach, Next, in details.

4.5.1 Overview of Next

Next is a software agent that executes continuously on the application layer of the Edge

device employing MPSoC and runs on the most power efficient CPU, which is the LIT-

TLE CPU of Exynos 9810 MPSoC, in order to consume the least power while execut-

ing. Since the agent runs on the application layer, no modifications to the existing hard-

ware/software of the device is required.

The most important part of the Next methodology is to understand the user’s inter-

action behaviour with the display/UI and its effect on the frame rate. To achieve this,

the agent continuously monitors the frame rate every 25 milliseconds (ms) for a window

of n seconds. We call this virtual window of frame rates as frame window. From our em-

pirical data we found that choosing the frame window for 4 seconds generates the best

frame rate pattern analysis from user’s interaction. Since, frame rate is usually denoted

by frames per second (FPS), the agent has to scale the FPS accordingly due to monitoring

of the frame rate every 25 ms. For 4 seconds of frame window, we are able to capture 160

distinct values of frame rate during the user’s interaction for that 4 seconds. The agent
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now computes the mathematical mode operation of all the 160 distinct values, which

actually determines the most possible frame rate suitable to provide the desirable QoS

for the user during that session.

Now, as shown in Fig. 4.7, the mode value is fed to the reinforcement learning (RL)

module of the agent as the target FPS to achieve till the target FPS changes during the

next frame window of user’s interaction. The target FPS is now used for training pur-

poses by the RL agent, and more details are provided in section 4.5.2. If we consider that

the MPSoC consists of m number of processing element (PE) clusters and the current

operating frequency of each cluster for cluster wise DVFS is denoted by f C M
i ,where M ∈

1,2, ...m then the frequency values are fed to the RL module of the agent as part of the

states. In our implementation, Samsung Note 9 (Exynos 9810 MPSoC) has 3 PE clus-

ters namely: big CPU, LITTLE CPU and GPU. Once the agent is aware of the frequency

states of the PE clusters along with power consumption, temperature, current FPS (re-

ferred to as F PScur r ent ), which is the frame rate of the front buffer of VSync, and target

FPS (referred to as Tar g et_F PS), the agent takes action to maximize reward, which in

our case is to achieve the target FPS along with the best PPDW value. Once the training

is complete based on the states and action values, the agent selects the desired oper-

ating frequencies ( f C M
desi r ed ,where M ∈ 1,2, ...m) for the respective PE clusters and the

maxfreq (maximum operating frequency) of each cluster is set to that desired operating

frequency in order to achieve the target FPS and best PPDW for that FPS. Setting the

maxfreq provides the flexibility for the PEs to operate within the range of maximum and

minimum allowed operating frequencies.

4.5.2 Online Reinforcement Learning

Next is modeled to follow Q-Learning of reinforcement learning (RL) [Watkins and Dayan,

1992]. RL agent defines an environment (ϵ), in which the agent observes the state (si )

at a time instance i and performs an action (ai ), and receives a reward (ri ) for that in-

stance. At every time instance (i th), the agent chooses an action ai from a predefined

list of actions with ai ∈ 1,2, ....K , where K is the maximum number of actions allowed

for a given state. Following the action at time i any changes are perceived in the ϵ are

observed at time i +1, when the state of ϵ changes to si+1.

For our use case, if there are m number of PE clusters then for each cluster we would

obtain 3 actions: Frequency up, frequency down, do nothing. Here, we are under the

assumption that each cluster of PEs only allow cluster wise DVFS (operating frequency

is allowed for the cluster and not individual PEs). In this applicative case, we have 3

PE clusters on Exynos 9810 MPSoC and hence, there are 9 actions: big frequency up,
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Figure 4.7: Block digram of Next agent

big frequency down, do not change big frequency, LITTLE frequency up, LITTLE fre-

quency down, do not change LITTLE frequency, GPU frequency up, GPU frequency

down & do not change GPU frequency. It should be noted that setting operating fre-

quency (up, down and do nothing) means to set the maxfreq of the respective PE (big,

LITTLE, GPU) to that operating frequency. Setting the maxfreq to a particular value also

means that the frequency is free to operate between the minimum allowed frequency

(minfreq) of the PE cluster and the set maxfreq. In Next, the environment ϵ is defined

by the states such as frame rate, power consumption and peak temperature of the Edge

device running an application. For our Next implementation on Exynos 9810 MPSoC

the following states are chosen as input: bi g _C PU f r eq , LI T T LE_C PU f r eq , GPU f r eq ,

F PScur r ent , Tar g et_F PS, Powercur r ent , Temper atur ebi g and Temper atur edevi ce
2.

Here, the value of Tar g et_F PS is the mode of FPS values achieved from the frame win-

dow. Next is invoked every 100 ms to record the states and take actions.

The goal of the RL agent is to maximize reward ri in the future. The propagation

of information from the future is discounted by a γ factor at every time step such that:

ri =∑i+n
i γi ri in order to dampen the rewards’ effect on the agent’s choice of action. For

every time step the probability that the agent chooses an action at a given state is defined

by a policy function. In this policy, the function which maximizes the agent’s long term

2Temper atur ebi g is the temperature of the big CPU cluster, whereas, Temper atur edevi ce is the tem-
perature of the overall device consisting of temperature of the battery and MPSoC, which could be cap-
tured from the device.
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reward generation is called action-value function, which is defined by Q(si , ai ) as shown

in Eq. 4.5.

Q(si , ai ) =Q(si , ai )+α(ri −Q(si , ai )+γmaxaQ(si+1, a)) (4.5)

In Eq. 4.5, α is the learning rate at which the agent learns new information. We

have to keep in mind that the optimal action-value function could be obtained by it-

eratively updating Q(si , ai ) in Eq. 4.5. Now, to maximize the reward generation we re-

quire a reward function (R(si , ai )). For our reward function we use the Eq. 4.1 such that

R(si , ai ) = PPDWi . The agent’s goal is to maximize reward, which means the agent has

to optimize PPDW according to Eq. 4.4 and achieve F PScur r ent = Tar g et_F PS. The

max reward generation could be represented using the following equation:

max R(si , ai ) = max(PPDWi ),

where

max(PPDWi ) = PPDWbest ≥ PPDWi > PPDWwor st

(4.6)
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Figure 4.8: Increase in training time for online vs cloud (offline) as the frame rate in-
creases at part of the chosen states

For each application the training needs to be performed in order for the agent to

make a learned decision when the application is executed by referring to the action-

values. It should be kept in mind that if we consider all the possible value of frame rates

(FPS 0 to 60) as part of the states and reward generation as mentioned above then the

training time would be significant and hence quantizing the frame rate would be desir-

able for improved training time. Data series for Training time online in Fig. 4.8 shows
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the increase in average training time required for different frame rates for each appli-

cation on the device. If we choose 60 frame rate then no quantization is required since

that is the highest frame rate at 60 Hz refresh rate, whereas, for other frame rates we

quantize the frame rate range. In our experimentation, choosing 30 frame rate results

in the best training period on the Note 9 device. Since, through empirical data the av-

erage training period lasts around 3 minutes 27 seconds for a new application, which

has not been executed/trained before, the agent achieved the best reward (PPDW) for

the amount of time spent in training. Due to the Next agent executing on LITTLE CPU,

the average power consumption during the training time does not exceed more than 6%

of the average power consumption while executing the mobile application in general.

The training for every newly executing application is only performed once and the Q-

table (action-value) results are stored on the memory so that later when the application

is executed again the agent is able to refer to the Q-table to set the correct frequency

of different clusters (CPU/GPU). Given the training time is not significant compared to

daily usage of mobile applications (4 hours 16 minutes), no offline training is required

and the whole training could be performed on the device.

4.5.3 Offline training using Federated Learning or in Cloud

Given the fact that each Edge device manufacturers generally produce several differ-

ent Edge device models, which are capable of executing similar mobile applications, a

new type of machine learning called federated learning [Konečnỳ et al., 2016] could be

utilized to train the agent more effectively by leveraging the computational power of

the cloud. The training data from the Edge devices are sent back to the cloud server

where the training of the agent happens. Once the training is complete the learned data

(action-values) is sent back to the Edge devices, and hence, reducing the need of wasting

local computing resource of the Edge device for training. Since cloud is computationally

more powerful, the training period could significantly reduce to few seconds instead of

minutes. Data series for Training time in cloud in Fig. 4.8 shows the reduced training

time for different frame rate while the training is performed in a cloud system having

Intel Xeon E7-8860V3 processor (16 cores) with 64 GB DDR3 RAM. Although it should

also be noted that there was a maximum communication (to- and fro-) overhead of 4

secs between the device and the cloud system.
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4.6 Experimental Results

4.6.1 Experimental setup

In this section, we compare the proposed Next methodology against the independent

Linux CPU-GPU power management solution used in Android platforms by schedutil

governor (we refer to it as schedutil) and QoS-aware power management methodol-

ogy proposed by Pathania et al. [Pathania et al., 2014] (we refer to it as Int. QoS PM).

Due to lack in manufacturer’s support and vendor locking on Samsung Note 9 it was

not possible to install additional libraries in the Android kernel to access performance

counters. Moreover, such commercial devices also do not have a lot of hardware perfor-

mance counters to save chip area, and hence, we were not able to compare Next with

other state-of-the-art methodologies such as [Peters et al., 2016,Bhat et al., 2018], which

mostly rely on performance counter values to optimize power consumption or thermal

behaviour. To evaluate the efficacy of Next we chose different types of applications from

Google Play store [goo, ] to get a more holistic view on power saving and reduction of

thermal behaviour for such applications. From the pool of most popular applications

we chose the following to represent different types of apps that a user would normally

use: Facebook, Spotify music app, Chrome web browser (referred to as Web Browser),

Lineage 2 Revolution gaming app (referred to as Lineage), PubG Mobile gaming app (re-

ferred to as PubG) and Youtube video streaming app. All the applications were used

between 1 minute 30 seconds to 5 minutes per session, which is the general usage pat-

tern by users according to [res, ], and the results reflect the average power consumption

and peak temperature recorded during the sessions. For gaming applications (Lineage

and PubG) each session lasted for 5 minutes, whereas, for other types of applications

(Facebook, Spotify, Web Browser and Youtube) each session lasted between 1 minute 30

seconds to 3 minutes. For the results related to peak temperature observation, the ex-

periments were all performed on the same day while the ambient temperature around

the device was maintained around 21°C using controlled thermostat. All results for Next

were observed when it was fully trained on the respective applications.

4.6.2 Power evaluation

Fig. 4.9 shows the average power consumption of Next, schedutil and Int. QoS PM

for the chosen aforementioned applications. For Next approach the power savings for

Facebook, Lineage, PubG, Spotify, Web Browser and Youtube compared to schedutil

are 37.05%, 50.68%, 40.95%, 32.98%, 32.11% and 40.6% respectively. Since, Int. QoS
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PM is used for power management for mobile games and the methdology could not

be extended to all applications, we could only evaluate the methodology for Lineage

and PubG apps. The power savings of Int. QoS PM for Lineage and PubG compared

to schedutil are 16.31% and 23.84% respectively, making Next more power efficient by

41.07% and 22.47% respectively for the gaming apps when compared to Int. QoS PM,

proving the effectiveness of Next in terms of power saving over the state-of-the-art power

management approach such as Int. QoS PM.

Figure 4.9: Average power consumption for different mobile applications using schedu-
til, Next and Int. QoS PM approaches

Figure 4.10: Average peak temperature of big CPUs and the device for different mobile
applications using schedutil, Next and Int. QoS PM approaches
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4.6.3 Thermal evaluation

Fig. 4.10 shows the average peak temperature of big CPU cluster and the Samsung Note

9 device in general using schedutil, Next and Int. QoS PM. In the Fig. 4.10, Int. QoS

PM big represents the average peak temperature of big CPU cluster using Int. QoS PM,

Int. QoS PM dev. represents the average peak temperature of the device using Int. QoS

PM, Next big represents the peak temperature of big CPU cluster using Next, Next dev.

represents the peak temperature of the device using Next, schedutil big represents the

peak temperature of big CPU cluster using schedutil, and schedutil dev. represents the

peak temperature of the device using schedutil. From the Fig. 4.10 it is evident that

comparing the results against schedutil Next is capable of reducing peak temperature

by 29.16% (maximum) for big CPUs and 21.21% (maximum) for the device in general,

whereas Int. QoS PM is only able to reduce the peak temperature by maximum of 22.80%

for big CPU cluster and maximum of 3.51% for the device. This proves the effectiveness

of Next over schedutil and state-of-the-art Int. QoS PM for its ability to reduce peak

temperature of big CPUs and overall device.

4.6.4 Analysis of power and thermal evaluation

It is important to keep in mind that the proposed Next methodology (as mentioned in

Sec. 4.5.2) monitors the Tar g et_F PS, which is the mode of FPS values achieved during

the user’s interaction session while executing the respective apps, and then performs

DVFS on CPUs and GPUs to achieve the Tar g et_F PS. As we can notice from our ob-

servations from Sec. 4.4, depending on the Tar g et_F PS, performing DVFS on CPUs

and GPUs accordingly could lead to significant power saving and temperature reduc-

tion compared to the default schedutil governor. Thus, as seen in Sec. 4.6.2 and 4.6.3,

the proposed Next methodology was able to achieve impressive power and temperature

reduction.

4.6.5 Overhead analysis

From our empirical data, we noticed that the maximum overhead required for computa-

tion by the Next agent is around 227 ns on an average, which is computed over a session

lasting for at least 5 minutes.
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4.7 Scalability of Next across MPSoC platforms

To show the efficacy and scalability of the Next agent we implemented the software

agent in the Odroid XU4 development platform with slight modifications since, the pro-

vided Odroid XU4 experimental device didn’t have a touch screen display, and performed

a comparative study with the state-of-the-art approaches. More details on Odroid XU4

and the associated modifications of the Next method are as follows.

4.7.1 Hardware & Software Infrastructure

We utilized the Odroid XU4 development platform, which employs the Exynos 5422 MP-

SoC as described in Chapter 3, Sec. 3.8.1. The Exynos 5422 MPSoC comes equipped with

a GPU cluster, called Mali-T628 MP6 GPU, consisting of 6 shader cores and has seven

frequency scaling level as follows: 600, 543, 480, 420, 350, 266, 177 MHz respectively. On

Exynos 5422 the 4 ARM Cortex-A15 (big) CPU cores have individual temperature sensors

on them. In our experiments, we only observed the peak temperature of the 4 big CPUs.

The Odroid XU4 was running on UbuntuMate version 14.04 (Linux Odroid Kernel:

3.10.105) and executing the performance governor. During the time of implementing

and conducting our experiments the average ambient temperature of the room was

21°C.

4.7.2 Modification of Next for Odroid XU4

We modified Eq. 4.1 to incorporate performance of all types of applications, not just FPS

based ones, and the modified equation for PPDW as shown in Eq. 4.7, where Per fi is

the performance of the executing application at a given time period. All the states and

actions taken, as mentioned in Sec. 4.5.2, during the exploration by the agent remains

the same.

PPDWi = Per fi

∆T ×Pi
,where ∆T = Ti −Ta (4.7)

The objective is to maximize PPDWi such that PPDWdesi r ed is achieved. In Eq. 4.8,

Per fdesi r ed , Pdesi r ed and Tdesi r ed are the desired performance, desired power and de-

sired peak temperature of the system while executing an application.

PPDWdesi r ed = Per fdesi r ed

∆T ×Pdesi r ed
,where ∆T = Tdesi r ed −Ta (4.8)
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4.7.3 Experimental applications

To evaluate the efficacy of Next we modified some of the existing popular applications,

which mimics mixed workload as utilized by users, such that the agent is capable of

recording the performance output during the profiling step. The following applications

were chosen for the experimental evaluation:

Face detection: Face detection using Haar-cascade [Soo, 2014] is utilized where faces

are detected based on the presence of Haar features in the video image frame. This

application is denoted as face.

YOLO object detection: Object detection using You Only Look Once (YOLO) ap-

proach [Redmon et al., 2016] is utilized where objects are detected based on different

regions in the video image frame. This application is denoted as yolo.

Video rendering: Video rendering program is utilized, where each video image frame

is converted to gray-scale image and then the text, “Hello, World!" is rendered on top of

the video image frame to be shown as output. This application is denoted as render.

On-device streaming: A video streaming application is utilized, where the video is

streamed from the on-device storage. This application is denoted as stream.

Traffic sign detection: An application to detect traffic signs using Haar-cascade [Kalafatić

et al., ] is utilized, where Haar features for traffic signs are being detected. This applica-

tion is denoted as traffic.

MobileNet object classification: An application to classify dogs and cats in video

image frames using MobileNet CNN model [Howard et al., 2017] is utilized. This appli-

cation is denoted as classify.

For the aforementioned applications, since all of them are computer vision based,

we chose frames per second (FPS) to be the performance output. Since, Odroid XU4

doesn’t come with an in-built touch-screen such that the user’s behaviour could be ob-

served by the Next agent, we fixed the Per fdesr i ed value for the PPDW equation (Eq. 4.8).

In our experiments, we have chosen the desired FPS/performance (Per fdesr i ed ) to be 60

for face, yolo, render, stream, traffic & classify applications.

Additional benchmark applications: Since, benchmark applications from PARSEC

and SPLASH-2 benchmark suits don’t allow to observe the intermediate performance

(execution time) of the application while executing without the use of performance counter,

we executed blackscholes (denoted as blks.) from PARSEC, streamcluster (denoted as

strm.) from PARSEC [Bienia, 2011b] and fft from Splash-2 [Woo et al., 1995b] 216 times.

The minimum execution time out of 216 executions of the respective benchmark appli-

cation (228.18 secs for blks., 368.15 secs for strm.& 12.58 secs for fft) is chosen as the

Per fdesr i ed for that application. We chose to perform such experimentation to prove
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the scalability and efficacy of Next across different types of applications and not just for

computer vision based applications on the Odroid XU4.

Exploration sessions for face, yolo, render, stream, traffic & classify applications for

Next were 5 minutes, whereas, blks., strm. and fft were executed for their execution

lifespan for Next and Next_Mod to explore.

Note: Since, we have chosen the minimum (best) execution time for the additional

benchmark applications and given the fact that the media based benchmark applica-

tions such as face, yolo, render, stream, traffic and classify don’t have a specific execution

time since they are continuously executing, the power consumption here is equivalent

to the energy consumption (energy = power × execution time) for executing the respec-

tive applications since the execution time is constant here.

4.7.4 Experimental results and Comparative study

We evaluated Next while executing each of the aforementioned experimental applica-

tions and we show the average power consumption of the MPSoC and the average peak

temperature of the big CPUs. We chose to observe the peak temperature of big CPUs

since they tend to be the hottest hot spot in the MPSoC [Iranfar et al., 2018]. We also eval-

uated the average power consumption of the MPSoC and the average peak temperature

of big CPUs achieved by the performance governor (denoted as performance), interac-

tive governor (denoted as interactive) of Linux and the state-of-the-art approaches as

proposed in [Reddy et al., 2017] and [Dey et al., 2019e]. In [Reddy et al., 2017], the study

perform thread-to-core mapping and DVFS on the cores to workloads that are classified

based on a metric, Memory Reads Per Instruction (MRPI) and we denote this method-

ology as MRPI. In [Dey et al., 2019e], the study perform DVFS on processing elements

based on the desired reward, which is chosen to be reduced power consumption on the

device in our case, and we denote this methodology as RewardProfiler.

Fig. 4.11 shows the average power consumption of the device (see Fig. 4.11.(a)) and

the average peak temperature of big CPUs (see Fig. 4.11.(b)) while executing the afore-

mentioned benchmark applications using different DVFS approaches: performance, in-

teractive, MRPI, RewardProfiler and Next. It could be noticed that Next outperforms per-

formance, interactive, MRPI and RewardProfiler for applications such as face, yolo, ren-

der, stream, traffic and classify. Interestingly, although Next outperforms performance

and interactive governors for blks. strm., and fft applications, however, MRPI and Re-

wardProfiler outperforms Next in some of the cases.
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(a) Average power consumption in Watts

(b) Average peak temperature in °C

Figure 4.11: Average power consumption (Watts) and average peak temperature (°C) on
Odroid XU4 (Exynos 5422 MPSoC) while executing different applications on different
methodologies: performance, interactive, MRPI, RewardProfiler & Next

88



4.8 Discussion

Delayed RL approaches such as Q-Learning the agent must explore the dynamic sys-

tem (dynamic environment) long enough to find the optimal outcome [John, 1994]. Al-

though delayed RL approaches are good to optimize power consumption and temper-

ature of the system in an application agnostic manner, however, often times given the

number of actions (actions to perform DVFS on CPU, GPU) if the agent is not allowed

to explore long enough in the dynamic environment then the agent will result in sub-

optimal power consumption. The execution time of blks., strms. and fft applications

were not long enough for the Next agent to explore the environment long enough to

find the optimal power consumption and optimal peak temperature, and henceforth,

for such applications the Next could be outperformed. Therefore, for applications with

shorter execution time it could be a better approach to profile such applications specif-

ically to observe the optimal operating frequency level of the CPU and GPU to achieve

close to optimal power consumption.

Moreover, Next approach doesn’t consider DVFS on RAM along side CPU and GPU,

which has even higher opportunity to optimize power consumption and temperature of

the device. This calls for an approach that is capable of performing DVFS on CPU, GPU

and RAM together to cater the performance requirement of the executing application

while consuming less power and thermal behaviour on the device.

4.9 Summary

In this chapter, we have proposed a power and thermal efficiency agent for mobile MP-

SoC platforms based on reinforcement learning, which maximizes performance while

reducing power consumption and temperature of the mobile applications depending

on the user’s interaction with the display/UI and the desired QoS. Experimental evalua-

tion on real hardware platforms shows the efficacy of the proposed approach along with

its improvement over the state-of-the-art power and thermal management scheme.

In the next chapter, to explore DVFS on CPU, GPU and RAM together to optimize

power consumption and thermal behaviour while catering for performance require-

ments of executing applications, we propose a novel methodology to achieve the same

while also performing study on different processing elements (CPU, GPU, RAM) to ob-

serve their effect on different applications.
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Chapter 5

Performing DVFS on CPU, GPU and RAM

In the Chapter 4, we presented a methodology, which caters for Quality of Service while

being power and thermal efficient by performing DVFS on CPU and GPU in a mobile

MPSoC. However, most popular smartphones come equipped with MPSoC that allows

DVFS) on CPU, GPU and RAM (memory). We have noticed that based on some types

of programs, especially memory intensive ones, DVFS on RAM could affect a significant

portion of the total power consumption. Therefore, in this chapter, we propose a novel

approach to perform DVFS on CPU, GPU and RAM in a mobile MPSoC, which caters for

the performance requirement of the executing application while consuming low power.

5.1 Prologue to Third Contributory Chapter

This contributory chapter is based on the following articles along with my personal con-

tribution to these articles.

5.1.1 Article Details

1. Somdip Dey, Sangeet Saha, Xiaohang Wang, Amit Kumar Singh and Klaus McDonald-

Maier, “RewardProfiler: A Reward Based Design Space Profiler on DVFS Enabled

MPSoCs", 5th IEEE International Conference on Edge Computing and Scalable

Cloud (IEEE EdgeCom), 2019.

2. Somdip Dey, Samuel Isuwa, Suman Saha, Amit Kumar Singh, and Klaus McDonald-

Maier. "CPU- GPU-Memory DVFS for Power-Efficient Mobile MPSoC" in Future

Internet.
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Personal Contribution In The Articles: Conceptualization, methodology, and ex-

perimental software design was done by Somdip Dey. Validation of the research out-

come was performed by Somdip Dey and Amit Singh while formal analysis was done

by Somdip Dey. Investigation, resources gathering and data curation was performed by

Somdip Dey along with the initial draft paper writing. Paper was reviewed by Somdip

Dey, Amit Singh, Samuel Isuwa, Sangeet Saha, Xiaohang Wang and Klaus McDonald-

Maier. Visualization of data was also done by Somdip Dey.

5.1.2 Media coverage

Given the popularity of the proposed methodology in this article, it is covered by media

(news) outlets as follows.

1. “Effect of Different Frequency Scaling Levels on Memory in Regard to Total Power

Consumption in Mobile MPSoC", Semiconductor Engineering. Article link

5.2 Introduction & Motivation

In Chapter 1, Sec. 1.1, we have already noticed that DVFS on RAM (denoted as memory

only) could play a significant role in the overall reduction in power consumption (see

Fig. 1.1 in Sec. 1.1). There has been a series of published studies to perform DVFS on

CPU or GPU or memory separately or combination of two of these components [Patha-

nia et al., 2014, Isuwa et al., 2019, Dey et al., 2019a, Hsieh et al., 2015, Dey et al., 2020],

however, to the best of our knowledge there hasn’t been any study to perform DVFS

on CPU, GPU and memory together in order to optimize performance and power con-

sumption of executing applications in mobile MPSoC. Moreover, it is quite attractive to

employ methods such as Reinforcement Learning (RL) to perform CPU/GPU/Memory

DVFS since such methods could be application agnostic. However, for dynamic applica-

tions where the CPU, GPU and Memory usage vary dynamically, if RL methods are not

allowed to explore the system long enough then the achieved power consumption could

be sub-optimal [John, 1994]. We utilized the Next method (denoted as Next (CPU-GPU))

in Chapter 4 to perform CPU-GPU DVFS and extended the method to perform CPU-

GPU-Memory DVFS (denoted as Next_Mod (CPU-GPU-RAM)) to compare the power

consumption with our proposed method, denoted as CGM-DVFS, to perform CPU-GPU-

Memory DVFS. Fig. 5.1 shows the average power consumption in Watts on the Odroid
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XU4 development platform [odr, b], employing Exynos 5422 MPSoC [exy, a], while exe-

cuting different benchmark applications on different approaches. The benchmark ap-

plications are object detection using YOLO (yolo) [Redmon et al., 2016], blackscholes

from PARSEC [Bienia, 2011b] and fft from Splash-2 [Woo et al., 1995b]. From Fig 5.1, it is

evident that application agnostic approaches to perform DVFS on CPU-GPU-Memory

might not lead to close to optimal power consumption and henceforth, makes DVFS on

CPU, GPU & Memory in mobile MPSoCs more challenging.

Figure 5.1: Average power consumption (Watts) while executing different benchmark
applications on different approaches

5.2.1 Contributions

In this chapter, we study the effect of DVFS on memory towards the total power con-

sumption in the mobile MPSoC for different types of applications and we also propose

a novel approach, called CGM-DVFS (CPU-GPU-Memory DVFS), to perform DVFS on

CPU (big and LITTLE), GPU and memory in mobile MPSoC to cater for the performance

requirement of the executing application while consuming the least power. To this ex-

tent the concrete contribution of this chapter are as follows.

1. Study the effect of DVFS on memory towards the total power consumption and

performance of executing applications in a mobile MPSoC.

2. Propose a novel approach - CGM-DVFS - to perform DVFS on CPU-GPU-Memory

in the mobile MPSoC to cater for performance requirements of executing applica-

tions while consuming least power.

3. Experimental evaluation of CGM-DVFS on a real hardware platform, Odroid XU4,

and comparative study between CGM-DVFS and state-of-the-art approaches to

optimize power consumption.
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4. Performed a comparative study and analysis between CGM-DVFS and state-of-

the-art delayed Reinforcement Learning approaches to show CGM-DVFS is better

suited to achieve close ot optimal power consumption.

The rest of the chapter is organized as follows. In Sec. 5.3, we show the effect of

DVFS on memory using different applications. Sec. 5.4 defines the problem formulation

along with the hardware and software infrastructure used. In Sec. 5.5, we explain the

proposed method, CGM-DVFS and in Sec. 5.6, we show the efficacy of CGM-DVFS via

experimental evaluation. Finally, Sec. 5.7 discusses the future scope of this research and

Sec. 5.8 summarizes the chapter.

5.3 Motivational Case Study: Effect of DVFS on memory

To observe the effect of DVFS on memory towards the total power consumption and per-

formance of different types of executing applications in the mobile MPSoC, we choose

benchmark applications from PARSEC [Bienia, 2011b], Whetstone [web, , Longbottom,

2005] and Splash-2 [Woo et al., 1995b] benchmark suits as well as RSA encryption [Rivest

et al., 1983] and streaming Youtube videos in Chromium browser. Given the fact that

streaming video on Youtube is one of the most popular application/workload on a mo-

bile device [mos, ], we chose this workload along with other benchmark applications.

Due to the popularity of RSA encryption for key exchange [Thakkar, 2020] in most of the

secured applications, we have chosen to perform RSA for 512, 1024, 2048 and 4096 bits

encryption and observe the effect of DVFS on memory. Based on the parallelization,

size of working set and data usage of the different types of benchmark applications from

PARSEC and Splash-2, the applications (workload) were segregated into three types [Dey

et al., 2019c]: Compute Intensive (denoted as Compute), Memory Intensive (denoted

as Memory) & Mixed Workload (denoted as Mixed), where the workload is both com-

pute and memory intensive. Table 5.1 shows the abbreviations of the different types of

benchmark applications for our study on the effect of DVFS on memory. Note: Given the

compute and memory intensive nature of RSA encryption and Youtube video streaming

based on Chapter 3 [Dey et al., 2019c], both the applications are also considered to be

Mixed workload.

In Odroid XU4, there are nine available operating frequencies for memory and we

chose the highest (825 MHz), the middle (413 MHz) and the lowest (138 MHz) operating

frequency levels to observe the effect of DVFS on power consumption and performance

(execution time) of the executing benchmark applications mentioned in Table 5.1. We
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Table 5.1: Abbreviation of different types of benchmark applications

Benchmark Applications
Type Name (execution option) Abbreviation
Compute Whetstone wht.
Compute blackscholes (native) blks.
Memory x264 (simlarge) x264
Memory dedup (simlarge) ded.
Memory canneal (simlarge) cann.
Mixed FFT (simlarge) fft
Mixed facesim (simlarge) fsim.
Mixed streamcluster (native) strm.
Mixed Youtube in Chromium browser ytub.
Mixed RSA rsa

executed the benchmark applications five times on the aforementioned three operating

frequencies of the memory and observed the average power consumption and perfor-

mance (execution time), which are shown in Table 5.2. We also observed the power con-

sumption for the aforementioned three operating frequencies of the memory while the

system was idle (only executing background processes of the OS), which is also denoted

as idle, running on Linux performance governor. This serves as a baseline to evaluate

the effect of DVFS on memory in an idle Odroid XU4 system running on performance

governor. From Table 5.2 we can notice that DVFS on memory can improve the power

saving by 26.571% based on the type of application being executed.

In order to understand the tradeoff of power saving by performing DVFS on memory

we need to observe other metrics such as Instruction per Cycle (IPC) and CPU utiliza-

tion, which can be adversely affected by the memory. IPC is a performance metric used

to evaluate the efficiency of a computer processor by measuring the average number of

instructions executed by the CPU for each clock cycle [Patterson and Hennessy, 2013].

A higher IPC indicates a more efficient processor, as it can execute more instructions

in a given time period. The IPC is determined by the CPU architecture, the instruction

set, and the software being executed. CPU utilization represents the percentage of time

the CPU spends actively executing tasks as opposed to being idle [Eranian, 2008]. It in-

dicates how much of the CPU’s capacity is being used during a specific time period. A

high CPU utilization value can indicate that the CPU is working at or near its capacity,

while a low value indicates that the CPU has more available capacity to handle addi-

tional tasks [Ravindran et al., 2001]. Memory reads can significantly affect IPC because

they often introduce latency due to the time it takes to access data from memory. When

a CPU needs to fetch data from memory, it may have to wait for several clock cycles until
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Table 5.2: Power consumption (P. max) of different benchmark applications (App) while
executing the App on maximum operating frequency of the memory. P. middle (%) and
P. min (%) are the improvement in power saving while executing the App on the mid-
dle operating frequency and minimum operating frequency respectively. Perf. middle
(%) and Perf. min (%) are the loss in performance for executing the App on the middle
operating frequency and minimum operating frequency respectively.

App P. max (W) P. middle (%) P. min (%) Perf. middle (%) Perf. min (%)
idle 3.313 5.192 5.886 - -
wht. 3.556 4.415 5.202 -2.121 -3.638
blks. 5.474 5.298 9.81 -2.483 -7.823
x264 8.748 13.649 20.085 -6.486 -16.993
ded. 7.893 11.136 18.282 -7.674 -14.598
cann. 7.919 10.317 16.782 -7.847 -12.773
fft 7.41 4.575 14.008 -2.939 -15.834
fsim. 5.378 4.574 9.967 -3.475 -7.558
strm. 10.11 1.952 26.571 -2.116 -29.374
ytub. 7.014 1.725 7.214 - -
rsa 6.119 1.994 4.935 -1.032 -1.894

the data is retrieved, effectively stalling the pipeline and reducing the overall IPC during

that period. Similarly, CPU utilization value can also be affected by memory reads due to

the time it takes to access data from memory, which can lead to waiting periods (stalls)

in the CPU pipeline. As performing DVFS on memory affects the read/write operations

on the memory, thus, it is important for us to observe the effect on IPC and CPU utiliza-

tion while performing DVFS on memory.

The "perf" tool in Linux is a powerful utility that provides various performance coun-

ters and insights into the functioning of the CPU and other hardware components [Era-

nian, 2008]. It allows users to monitor and analyze performance metrics such as IPC and

CPU utilization [Weaver, 2013]. Since, strm. application achieved the most power sav-

ing because of DVFS on memory, as shown in Table 5.2, the IPC and CPU utilization of

the application were recorded while being executed on the highest, the middle and the

lowest frequency of the memory to understand the effect of memory DVFS on the per-

formance of executing such applications. The IPC and CPU utilization for blks. and x264

applications were also recorded, so, that we can observe the IPC and CPU utilization for

different types of application to get a holistic understanding of how these metrics could

be affected by memory DVFS for different applications. Keep in mind, IPC and CPU

utilization for the different types of application were observed while running on Linux

performance governor.

Table 5.3 shows the different IPC and CPU utilization (referred to as CPU Utilized)
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Table 5.3: IPC and CPU utilization (referred to as CPU Utilized) for three different types
of executing applications - strm. (mixed workload), blks. (compute intensive) & x264
(memory intensive) while running on the highest operating frequency (denoted as Max),
the middle operating frequency (denoted as Middle) & the lowest operating frequency
(denoted as Min) of memory

strm. Max Middle Min
IPC 0.64 0.52 0.23
CPU Utilized 1.000 1.000 1.000

blks. Max Middle Min
IPC 1.21 1.11 0.77
CPU Utilized 0.730 0.765 0.882

x264 Max Middle Min
IPC 1.75 1.6 1.06
CPU Utilized 1.002 1.003 1.005

values for three different types of executing applications - strm. (mixed workload), blks.

(compute intensive) & x264 (memory intensive) while running on the highest operating

frequency (denoted as Max), the middle operating frequency (denoted as Middle) & the

lowest operating frequency (denoted as Min) of memory. From Table 5.3 we can observe

that while executing a mixed workload such as strm. the IPC value dropped drastically

by performing DVFS on memory, however, CPU utilization didn’t change. The drop in

IPC value for strm. application running on the lowest operating frequency of the mem-

ory coincides with the loss in performance as shown in Table 5.2. Another interesting

observation from Table 5.3 is that while executing compute intensive workload such as

blks. at different operating frequency of the memory, CPU utilization value went up

while the IPC value went down on lower operating frequency of memory. The same

observation is also made while running a memory intensive workload like x264. These

observations show that as the operating frequency of the memory are scaled on perfor-

mance governor CPUs compensate for memory running at lower frequency.

Anyhow, from Table 5.2 it is quite evident that there is a scope of saving more power

consumption by performing DVFS on memory, and hence, this calls for an approach

that is capable of performing DVFS on CPU, GPU and memory to cater for performance

requirement of the executing application while consuming the least power.
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5.4 System model and problem formulation

In this section, we explore the specific system model being used for the research and

define the problem formulation, which forms the foundation of the proposed method.

5.4.1 Hardware & Software Infrastructure

We chose Odroid XU4 [odr, b] development board, as mentioned in Chapter 4, Sec. 4.7.1,

to implement our CPU-GPU-Memory DVFS. This MPSoC also supports DVFS enabled 2

GB RAM, which has the following nine frequency scaling levels: 825, 728, 633, 543, 413,

275, 206, 165 and 138 MHz respectively. Exynos 5422 MPSoC also has 5 temperature

sensors, 4 of which are located on 4 big CPUs and 1 on the GPU.

The Odroid XU4 was running on UbuntuMate version 14.04 (Linux Odroid Kernel:

3.10.105) and executing the performance governor. During the time of implementing

and conducting our experiments the average ambient temperature of the room was

21°C.

5.4.2 Problem formulation

Given: Let us consider a system that has a set of applications, S App = {App1, App2, ....Appi },

where Appi is the i th application and Appi consists of a set of tasks, St ask = {t sk1, t sk2, ....t ski },

where St ask always generates a fixed performance output Pr fi for the fixed DVFS config-

uration values Ri while executing Appi on the system. Here, Ri consists of the combina-

tion of the DVFS values for big CPUs (DV F Sbi ), LITTLE CPUs (DV F SLi ), GPUs (DV F Sgi )

and memory (DV F Smi ) such that Ri =< DV F Sbi ,DV F SLi ,DV F Sgi ,DV F Smi > leads to

a fixed performance output Pr fi . Now, if we consider Pr fdesi r ed as the desired value of

the performance output for the executing Appi .

Find: The desired DVFS configuration values (Rdesi r ed ), which are the combination of

the desired DVFS values for big CPUs (DV F Sbdesi r ed ), LITTLE CPUs (DV F SLdesi r ed ), GPUs

(DV F Sgdesi r ed ) and memory (DV F Smdesi r ed ).

Subject to: Meeting the desired performance Pr fdesi r ed while consuming the least power

(Pl east ) during the execution of Appi on Rdesi r ed .

5.5 Proposed methodology: CGM-DVFS

In this section, we introduce our proposed approach, CGM-DVFS, in details.
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5.5.1 Overview of CGM-DVFS

Fig. 5.2 illustrates the block-diagram of our proposed CGM-DVFS methodology. CGM-

DVFS is not just an approach, but also an automated agent that sets the appropriate

DVFS on CPU, GPU and memory to achieve the desired performance of the execut-

ing application while consuming least power. For each Appi in S App , the profiling of

Appi (this step is denoted as Profiling) is performed where for different combination

of DV F Sbi , DV F SLi , DV F Sgi and DV F Smi , the corresponding value of Pr fi , the corre-

sponding peak temperature instance (Ti ) and the corresponding power consumption

(Pi ) of the device are recorded and stored on disk storage memory. More on Profil-

ing is provided in Sec. 5.5.2.1. From the set containing the profiled values of SPr f =
{Pr f1,Pr f2, ....Pr fi }, the desired performance Pr fdesi r ed is searched based on the equa-

tion: Pr fdesi r ed ∈ SPr f ; where Pr fi ≥ Pr fdesi r ed . Now, for all the possible values of Pr fi

that are equal or greater than Pr fdesi r ed from SPr f , the agent searches for the value

with the least power consumption such that Pleast = mi n(SP ); where SP = {P1,P2, ....Pi }

(P1,P2, ....Pi are the corresponding power consumption of Pr f1,Pr f2, ....Pr fi ). The agent

then fetches the associated DV F Sbi , DV F SLi , DV F Sgi and DV F Smi configuration (this

step is denoted as Fetch desired config), and then the desired DVFS values of big CPUs

(DV F Sbdesi r ed ), LITTLE CPUs (DV F SLdesi r ed ), GPUs (DV F Sgdesi r ed ) and memory (DV F Smdesi r ed )

are set to this configuration (this step is denoted as Set desired DVFS).

Appi

Profile (Prfi) 
Performance, 
Power, CPU 

Freq, GPU Freq, 
Memory Freq, 
Temperature

Find the desired 
performance 

(Prfdesired) 
coinciding Prfi

Find CPU, GPU, 
Memory Freq 

confirguration for 
Prfdesired

Set the CPU, 
GPU, Memory 

Freq 
confirguration for 

Prfdesired

Profiling Fetch desired config Set desired DVFS

Figure 5.2: Block diagram illustrating CGM-DVFS Methodology

5.5.2 Steps in details

5.5.2.1 Profiling

In the profiling step, we utilize the concept of clustering performance for a range of DVFS

as introduced in [Dey et al., 2019e], where it is proposed that for a group of DVFS values

for the same processing element the performance outcome remains almost similar. For

example, for Appi a set of consecutive DVFS values could lead to more or less the same
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performance output Pr fi and hence, instead of selecting each of these DVFS values dur-

ing the design space exploration (Profiling) only one representative DVFS value from the

set is selected and then profiled only for that value. In this way, the agent could reduce

the number of configuration that it has to profile. Based on approximate computing we

have clustered the different frequency scaling levels into major groups of varying num-

bers for different processing elements (CPU, GPU, memory).

For our experimental device, Odroid XU4, we chose the following DVFS configura-

tions: 4 DVFS levels for big CPUs (2 GHz, 1.4 GHz, 0.8 GHz, 0.2 GHz); 4 DVFS levels for

LITTLE CPUs (1.4 GHz, 1 GHz, 0.8 GHz, 0.2 GHz); 3 DVFS levels for GPUs (600 MHz, 420

MHz, 177 MHz) and 3 DVFS levels for memory (825 MHz, 413 MHz, 138 MHz). In [Dey

et al., 2019e], the equation for the combined design point (C DP ) is provided for a MP-

SoC, where DVFS capability is only considered in big CPUs, LITTLE CPUs and GPUs. Eq.

5.1 represents the equation governing C DP .

C DP = (
N∑

C=1
nC × fC +

N∏
C=1

nC × fC )× fGPU ,

wher e 1 ≤ N ≤ nC

(5.1)

In Eq. 5.1, N is the number of clusters in the MPSoC, fC is the number of frequency

scaling levels for the whole cluster (we are only considering cluster wise DVFS capa-

bility), nC is the number of cores in each cluster and fGPU is the number of frequency

scaling levels for the GPU, where we consider nGPU is equal to 1 for Odroid XU4. In Eq.

5.1, the governing equation for C DP only works for DVFS enabled multi-core architec-

ture, which means nC and fC is always more than 1. It could be inferred from the Eq.

5.1 that the number of clusters (N ) present in the system is either less than or equal to

the number of cores (nC ) present in each cluster. The reason to provide this constraint

is because from design point of view it is more practical to have more number of cores

on the die than the number of clusters due to die size constraint.

Since, in this chapter, we also consider DVFS in memory, the equation for C DP is

modified to incorporate the operating frequency levels of memory as well and is repre-

sented in Eq. 5.2 based on Eq. 5.1. In Eq. 5.2, nb and nL represent the number of big

CPUs and LITTLE CPUs respectively, whereas, fb , fL , fGPU , fmem represent the number

of operating frequency levels for big CPUs, LITTLE CPUs, GPUs and memory respec-

tively.

C DP = {((nb × fb)+ (nL × fL))+ (nb × fb

×nL × fL)}× fGPU × fmem

(5.2)
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Since, in our chosen platform and methodology, DVFS in big and LITTLE CPUs hap-

pens cluster wise, the total number of reduced CDP for the aforementioned configura-

tion, as per Eq. 5.2, is 216 ({((1×4)+ (1×4))+ (1×4×1×4)}×3×3). The agent starts the

profiling by selecting the maximum DVFS level for big, LITTLE CPUs, GPUs and memory,

records the performance output, temperature and power consumption for that configu-

ration and then selects the next lower DVFS level in the configuration to record the same.

The agent uses a waterfall method where the DVFS levels are selected from high to low

on big CPUs first, then on the LITTLE CPUs, then on the GPUs and then on the memory.

From our empirical data we noticed that to profile accurately it is best to profile each of

the reduced CDP every 100 milliseconds for 1 seconds and hence, the total number of

profiling points become 2160 (216×10).

5.5.2.2 Fetch desired config & Set desired DVFS

Once all the 2160 profiling points are traversed and configurations are recorded, they are

stored on the disk memory. These configurations will be used (as in Fetch desired config

& Set desired DVFS) by the agent to find Pr fdesi r ed for which the system consumes the

least power (Pleast ) and set the DVFS values accordingly.

5.5.3 Justification of the design choices

In majority of commercial smartphones (mobile phones) utilizing MPSoC, due to con-

straint in the display size, most consumers utilize one application at ay time period

[Budiu, 2015]. Henceforth, we have considered profiling one application at a time to

make the proposed method more commercially applicable. Moreover, in Chapter 4, Sec.

4.8 we already showed that for application agnostic approaches such as delayed Rein-

forcement Learning could lead to sub-optimal or worse power consumption than ap-

plication specific profiling approaches such as CGM-DVFS. Additionally, since different

DVFS configurations for dynamic applications (tasks) could lead to dynamic profiling

output such as performance & power consumption, we invoke CGM-DVFS at random

time period to update the profiling configurations and save them on the memory to

perform Fetch desired config & Set desired DVFS steps.
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5.6 Experimental results

5.6.1 Experimental applications

We chose the benchmark applications such as face, yolo, render, stream, traffic, classify,

blks., strm. and fft as mentioned in Chapter 4, Sec. 4.7.3 to prove the efficacy of CGM-

DVFS. In our experiments, we have chosen the desired FPS/performance (Per fdesr i ed )

to be 60 for face, yolo, render, stream, traffic & classify applications. We executed blks.,

strm. and fft 216 times (as per reduced CDP) such that each execution is performed

on each configuration from the reduced CDP. The minimum execution time out of 216

executions of the respective benchmark application (228.18 secs for blks., 981.41 secs

for strm. & 12.58 secs for fft) is chosen as the Pr fdesr i ed for that application.

Since, we have chosen the minimum (best) execution time for the additional bench-

mark applications and given the fact that the media based benchmark applications such

as face, yolo, render, stream, traffic and classify don’t have a specific execution time since

they are continuously executing, the power consumption here is equivalent to the en-

ergy consumption (energy = power × execution time) for executing the respective appli-

cations since the execution time is constant here.

5.6.2 Evaluation and Comparative study

We evaluated CGM-DVFS for each aforementioned experimental application fifteen times

and we show the average power consumption of the MPSoC and the average peak tem-

perature of the big CPUs. We chose to observe the peak temperature of big CPUs since

they tend to be the hottest hot spot in the MPSoC [Iranfar et al., 2018]. We also evalu-

ated the average power consumption of the MPSoC and the average peak temperature

of big CPUs achieved by the performance governor (denoted as performance), interac-

tive governor (denoted as interactive) and the state-of-the-art approaches as proposed

in [Reddy et al., 2017], [Dey et al., 2019e] and Next, as described in Chapter 4, [Dey et al.,

2020].

In [Reddy et al., 2017], the study performed thread-to-core mapping and DVFS on

the cores to workloads that are classified based on a metric named Memory Reads Per

Instruction (MRPI), and we denote this methodology as MRPI.

In [Dey et al., 2019e], the study performed DVFS on processing cores based on the

desired reward, which is chosen to be reduced power consumption on the device in

our case, and we denote this methodology as RewardProfiler. In Chapter 4 [Dey et al.,

2020], we proposed Next, which performs DVFS on CPU and GPU based on the user in-

teraction with the device using Q-Learning (Reinforcement Learning), where the reward
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function is Eq. 5.3, which is based on Eq. 5.4. We also denote this methodology as Next

in our comparative study. In Eq. 5.3, the reward function tries to maximize the value

of PPDW , which is a metric, performance per degree watt, incorporating performance

(F PSi ), temperature (∆T , where ∆T is the difference between the current tempera-

ture, Ti , and the ambient temperature, Ta) and power consumption (Pi ) of the device.

The agent in Next has the following states: bi g _C PU f r eq , LI T T LE_C PU f r eq , GPU f r eq ,

F PScur r ent , Tar g et_F PS, Powercur r ent , Temper atur ebi g and Temper atur edevi ce ;

where bi g _C PU f r eq is the frequency of the big CPU, LI T T LE_C PU f r eq is the frequency

of the LITTLE CPU, GPU f r eq is the frequency of the GPU, F PScur r ent is the current per-

formance in terms of FPS, Tar g et_F PS is the desired performance in terms of FPS,

Powercur r ent is the current power consumption, and Temper atur ebi g and Temper atur edevi ce

are the temperature of the big CPU and the whole device consecutively. The actions per-

formed by the Next agent are as follows: big frequency up, big frequency down, do not

change big frequency, LITTLE frequency up, LITTLE frequency down, do not change

LITTLE frequency, GPU frequency up, GPU frequency down & do not change GPU fre-

quency. We modified Eq. 5.4 to incorporate performance of all types of applications,

not just FPS based ones, and the modified equation for PPDW is Eq. 5.5. Moreover,

we also extended Next, as specified in Chapter 4, denoted as Next_Mod, to incorporate

memory DVFS along with CPU and GPU such that we can draw a comparative study

between Next and CGM-DVFS. In Next_Mod, the agent has a new state, R AM f r eq , fre-

quency of memory, and three more new actions: RAM frequency up, RAM frequency

down, do not change RAM frequency. Both Next and Next_Mod are invoked every 100

ms. Exploration sessions for face, yolo, render, stream, traffic & classify applications for

Next and Next_Mod were 5 minutes, whereas, blks., strm. and fft were executed for their

execution lifespan for Next and Next_Mod to explore. [Reddy et al., 2017], [Dey et al.,

2019e], [Dey et al., 2020] & Next_Mod were chosen for the comparative study because

these methods perform DVFS on a combination of CPU, GPU, Memory or all.

max R(si , ai ) = max(PPDWi ),

where

max(PPDWi ) = PPDWbest ≥ PPDWi > PPDWwor st

(5.3)

PPDWi = F PSi

∆T ×Pi
,where ∆T = Ti −Ta (5.4)

PPDWi = Per fi

∆T ×Pi
,where ∆T = Ti −Ta (5.5)
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(a) Average power consumption in Watts

(b) Average peak temperature in °C

Figure 5.3: Average power consumption (Watts) and average peak temperature (°C) of
Odroid XU4 while executing different applications on different methodologies: perfor-
mance, interactive, MRPI, RewardProfiler, Next, Next_Mod & CGM-DVFS
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Fig. 5.3 shows the average power consumption of the device (see Fig. 5.3.(a)) and

the average peak temperature of big CPUs (see Fig. 5.3.(b)) while executing the afore-

mentioned benchmark applications using different DVFS methodologies: performance,

interactive, MRPI, RewardProfiler, Next, Next_Mod & CGM-DVFS. Tables 5.4 and 5.5

show the improvement in power saving (%) and reduction of peak temperature (%) re-

spectively of CGM-DVFS compared to performance, MRPI, RewardProfiler, interactive,

Next & Next_Mod. Based on the tables CGM-DVFS is capable of saving 33.476% more

power compared to performance governor, whereas, it is capable of saving 26.796%

more power compared to the state-of-the-art approach, MRPI. On the other hand, CGM-

DVFS is also capable of reducing the peak temperature of big CPUs by 25.567% com-

pared to performance governor and by 21.238% compared to MRPI.

Table 5.4: Improvement in power saving (%) of CGM-DVFS compared to performance
(perf.), MRPI, RewardProfiler (RProfiler.), interactive (inter.), Next & Next_Mod (N_Mod.)

App perf. MRPI RProfiler. inter. Next N_Mod.
face 21.08 14.59 9.28 17.81 8.61 -3.17
yolo 24.46 8.79 4.049 19.82 2.16 1.89

render 18.00 9.40 8.39 15.34 8.12 8.89
stream 32.81 23.17 24.34 29.55 19.40 17.58
traffic 19.74 9.17 4.02 15.57 0.48 -0.03

classify 33.48 26.80 15.36 30.2 11.42 6.93
blks. 12.43 5.13 3.83 11.34 6.10 5.10
strm. 21.20 18.80 11.97 15.99 2.62 0.60

fft 12.21 9.04 9.42 11.40 3.15 4.89

Table 5.5: Reduction in peak temperature of big CPUs (%) of CGM-DVFS compared
to performance (perf.), MRPI, RewardProfiler (RProfiler.), interactive (inter.), Next &
Next_Mod (N_Mod.)

App perf. MRPI RProfiler. inter. Next N_Mod.
face 25.57 14.16 13.18 19.38 11.29 3.04
yolo 19.43 8.13 6.74 15.67 6.44 5.19

render 20.80 8.06 5.38 18.80 3.90 6.27
stream 13.93 6.428 3.83 12.16 3.99 1.82
traffic 23.25 8.71 3.96 16.58 2.63 0.38

classify 24.50 21.24 4.30 22.42 4.92 2.29
blks. 12.43 5.13 3.83 11.34 4.46 2.49
strm. 21.20 18.80 11.97 15.99 13.39 11.67

fft 12.21 9.04 9.42 11.40 10.95 12.08

From Table 5.4 & 5.5, as we can observe that for CGM-DVFS approach the most

power saving and temperature reduction are achieved while executing classify and strm.
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applications compared to the performance governor, so, we wanted to explore the sys-

tem behaviour further to investigate that. CGM-DVFS executed the classify application

with the following maximum operating frequency settings: 1200 MHz on big CPU clus-

ter, 1200 MHz on LITTLE CPU cluster and 728 MHz on memory. While executing strm.

application CGM-DVFS ran the application with the following maximum operating fre-

quency settings: 1500 MHz on big CPU cluster, 1200 MHz on LITTLE CPU cluster and

728 MHz on memory. On the other hand, performance governor executed both the clas-

sify and strm. applications at the max operating frequency of 2000 MHz on big CPU clus-

ter, 1400 MHz on LITTLE CPU cluster and 825 MHz on memory. Since, CGM-DVFS ex-

ecuted the above applications at a significantly lower operating frequencies, especially

for big CPU cluster, compared to the performance governor, the approach was able to

achieve high power saving and temperature reduction comparatively.

The IPC and CPU utilization values were also recorded while executing classify and

strm. applications on both CGM-DVFS and performance governor. From Table 5.6, we

can observe that while executing the classify and strm. applications on the CGM-DVFS,

the CPU utilization remained the same compared to performance governor, however,

the IPC value increased comparatively, hinting that the CPU capacity was utilized more

compared to the performance governor.

Table 5.6: IPC and CPU utilization (denoted as CPU Utilized) while executing classify
and strm. applications on performance governor and CGM-DVFS

classify Performance CGM-DVFS
IPC 1.79 1.88
CPU Utilized 1.002 1.002
strm. Performance CGM-DVFS
IPC 0.64 0.71
CPU Utilized 1.000 1.000

Overhead analysis: From our empirical data, we noticed that the average overhead

to read the profiled data (2160 profiling points) in the Fetch desired config step is 29.507

milliseconds and the overhead to search for the desired DVFS configuration in this same

step is 0.145 milliseconds.

5.7 Discussion

From Fig. 5.3, Tables 5.4 and 5.5 it could be noticed that CGM-DVFS outperforms Q-

Learning based Reinforcement Learning (RL) approach, Next, where DVFS is only per-

formed on CPU and GPU. This was expected since CGM-DVFS performs DVFS on CPU,
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GPU and RAM in comparison to reduce the power consumption even more. However,

when compared to Next_Mod, where DVFS is performed on CPU, GPU & RAM using Q-

Learning, CGM-DVFS outperforms for yolo, render, stream, classify, blks., strm. and fft

applications. Interestingly, Next_Mod seems to be producing sub-optimal (worse) re-

sults when compared to Next and CGM-DVFS, especially for render and fft applications.

This is due to the fact that for delayed RL approaches such as Q-Learning the agent must

explore the dynamic system (dynamic environment) long enough to find the optimal

outcome [John, 1994]. As the number of actions and states increase in the environment,

the time to explore for the RL agent also increases in order to reach the optimal output.

Although delayed RL approaches are good to optimize power consumption and tem-

perature of the system in an application agnostic manner, however, often times given

the number of actions (actions to perform DVFS on CPU, GPU, RAM) if the agent is not

allowed to explore long enough in the dynamic environment, then the agent will result

in sub-optimal power consumption. Whereas, application specific profiling approaches

such as CGM-DVFS will result in close to optimal power consumption since these ap-

proaches are specific to applications.

Given the advantages and disadvantages of both profiled application based DVFS

approaches such as CGM-DVFS and application agnostic DVFS approaches such as RL

based DVFS, it is desirable to use a combination of both the approaches to reach maxi-

mum power consumption and thermal behaviour reduction of the mobile MPSoC while

catering for the performance requirement of the executing application.

On the other hand, in Chapters 3, 4 and 5, we have only explored the effect and ap-

proaches to perform DVFS such that performance, power and thermal behaviour could

be optimized, however, DVFS on processing elements could also affect the security of

the mobile MPSoC, especially security flaws arising due to temperature side-channel

attack, which have not been addressed yet. This calls for mechanisms to perform DVFS

to address this challenge as well.

5.8 Summary

In this chapter, we studied the effect of different frequency scaling level on RAM (mem-

ory) towards the total power consumption in the mobile MPSoC. We also proposed CGM-

DVFS, an agent, to perform DVFS on big and LITTLE CPUs, GPUs and memory on the

mobile MPSoC and experimental results prove the efficacy of CGM-DVFS in reducing

power consumption and peak temperature while catering for performance requirement

compared to the state-of-the-art approaches. Through experimental results we also
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show that application specific profiling approaches such as CGM-DVFS outperform and

result in better optimal power consumption compared to delayed Reinforcement Learn-

ing approaches such as Q-Learning when the system (environment) is dynamic.

The primary focus in this chapter was to perform DVFS on CPU, GPU and RAM to op-

timize power consumption and henceforth, optimize thermal behaviour as well. How-

ever, performing DVFS on processing elements, especially in CPUs, could lead to tem-

perature based side-channel attack in mobile MPSoCs. In the next chapter, we explore

temperature side-channel attack that could be exploited because of performing DVFS

on CPUs and also propose a mechanism to secure against such attack while optimizing

the thermal behaviour of the device.
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Chapter 6

DVFS & Temperature Side-Channel
Attack

In the previous chapters (Chapter 3, 4 and 5), we observed the effect of DVFS on pro-

cessing elements such as CPU & GPU, and memory unit such as RAM to optimize power

consumption and thermal behaviour, however, DVFS on processing elements could also

affect the security of the mobile MPSoC, especially security threats arising from tem-

perature based side-channel attack. In this chapter, we explore such phenomenon and

propose a novel approach, DATE: Defense Against TEmperature side-channel attacks, of

reducing spatial and temporal thermal gradient, which makes the system more secure

against temperature side-channel attacks while at the same time increases the reliability

of the device in terms of lifespan.

6.1 Prologue to Fourth Contributory Chapter

This contributory chapter is based on the following articles along with my personal con-

tribution to these articles.

6.1.1 Article Details

1. Somdip Dey, Sangeet Saha, Xiaohang Wang, Amit Kumar Singh and Klaus McDonald-

Maier, “RewardProfiler: A Reward Based Design Space Profiler on DVFS Enabled

MPSoCs", 5th IEEE International Conference on Edge Computing and Scalable

Cloud (IEEE EdgeCom), 2019.

2. Somdip Dey, Amit Kumar Singh, Xiaohang Wang and Klaus McDonald-Maier, “Dead-

Pool: Performance Deadline Based FrequencyPooling and Thermal Management
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Agent in DVFS Enabled MPSoCs", 5th IEEE International Conference on Edge Com-

puting and Scalable Cloud (IEEE EdgeCom), 2019.

3. Somdip Dey, Amit Kumar Singh and Klaus McDonald-Maier, “ThermalAttackNet:

Are CNNs Making It Easy To Perform Temperature Side-Channel Attack In Mobile

Edge Devices?", Future Internet 2021, 13, 146.

4. Somdip Dey, Amit Kumar Singh, Xiaohang Wang and Klaus McDonald-Maier, “DATE:

Defense Against TEmperature Side-Channel Attacks in DVFS Enabled MPSoCs",

ACM Transactions on Embedded Computing Systems. (Under revision)

Personal Contribution In The Articles: Conceptualization, Somdip Dey; methodol-

ogy, Somdip Dey; software, Somdip Dey; validation, Somdip Dey and Amit Singh; formal

analysis, Somdip Dey; investigation, Somdip Dey; resources, Somdip Dey; data cura-

tion, Somdip Dey; writing–original draft preparation, Somdip Dey; writing–review and

editing, Somdip Dey and Amit Singh and Xiaohang Wang and Sangeet Saha and Klaus

McDonald-Maier; visualization, Somdip Dey; supervision, Somdip Dey; project admin-

istration, Somdip Dey.

6.2 Introduction & Motivation

In the study [Masti et al., 2015], thermal covert channels on multi-processors were ex-

ploited by observing the exponential rise and fall of CPU temperature while execut-

ing a CPU intensive application. In order to verify this behavior on embedded multi-

processors we observed the temperature readings on 4 ARM Cortex A15 big CPU cores

on the Exynos 5422 [exy, a] system-on-chip (SoC) while almost idle (the system was only

executing background OS processes and the Linux governor was running ondemand

power scheme), which we denote as baseline temperature of the CPU cores. In Fig. 6.1

we could notice basel i ne temper atur e of ARM Cortex A15 big CPUs in both 2D (Fig.

6.1.(a)) and 3D (Fig. 6.1.(b)) plots. In Fig. 6.1, the graph representing the baseline temper-

ature readings for different ARM Cortex A15 big CPUs closely mimicked the oscillatory

pattern that of simple harmonic motion [Serway and Jewett, 1998]. The reason to pro-

vide a visual representation of both 2D and 3D plots is to highlight the spatial as well as

temporal thermal gradient because the 2D representation might not be able to provide a

microscopic view of spatial thermal gradient over time. The X-axis of the 3D graph rep-

resents the temperature (°C), Y-axis of the graph represents time interval (millisecond)
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Figure 6.1: Temperature readings on 4 ARM A15 big CPU cores while idle

110



0

50

100

1000
500

0 95908580757065

Temperature peaks on CPU 4

Temperature peaks on CPU 5

Temperature peaks on CPU 6

Temperature peaks on CPU 7

Temperature (°C)

Time interval

Frequency

Figure 6.2: Temperature peaks on 4 ARM A15 big CPU cores while executing Blacksc-
holes benchmark

and the Z-axis represents the frequency (scaled to 0.1 MHz) of that particular tempera-

ture over time. Since the Odroid XU4 [odr, b] platform, which implements the Exynos

5422 MPSoC, only have temperature sensors on 4 ARM Cortex-A15 (big) CPU cores, we

have only reported on their temperature behavior.

Based on [Masti et al., 2015] when we executed the Blackscholes benchmark from the

PARSEC benchmark suits [Bienia, 2011a] with default Linux ondemand governor on the

Exynos 5422 SoC, we could notice spikes in temperature at certain intervals along with a

high frequency in thermal cycles (see Fig. 6.2). In Fig. 6.2, we noticed that the temporal

and spatial thermal gradient on the CPU cores varies a lot during the execution period.

When we compared the thermal behavior of the CPUs during the execution of Blacksc-

holes and basel i ne temper atur e from our earlier observation, it became evident that

heat dissipation from multiple processors could in fact lead to thermal covert channels

and hence leading to temperature side-channel attacks.

Most of the relevant published works [Hutter and Schmidt, 2013, Masti et al., 2015,

Bartolini et al., 2016, DeVogeleer et al., 2014, De Vogeleer et al., , Gu et al., 2016, Long

et al., 2018,Knechtel and Sinanoglu, 2017] in temperature side-channel attacks focus on

various different element of pursuing such attack or protect from it. However, none of

them has evaluated security against temperature side-channel attack as a cumulative

entity. The main reason is that the definition of overall security of a device against tem-

perature side-channel attacks is missing. Moreover, in [Demme et al., 2012], the schol-

ars proposed a metric to measure information leakage in hardware systems called the

side-channel vulnerability factor, which is based on commonalities in all side-channel

attacks such as: the attacker always uses patterns in the victim system’s behaviour to

111



carry out an attack; patterns arising from the structure of programs used; typical user

behavior, user inputs, and their interaction with the computing system. Although some

of these factors are true in a temperature side-channel attack, the metric does not con-

sider spatial and temporal thermal behaviour of the processing elements specifically,

which are more relevant and of importance in such an attack. Therefore, in this chap-

ter, we define a metric coined as Thermal-Security-in-Multi-Processors (T SMP ), which

indicates the cumulative security against such side-channel attacks.

The main objective of this chapter is to reduce the value of TSMP for any execut-

ing application/task in order to improve the security of the MPSoC from temperature

based side-channel attacks. In order to overcome the pressing issue of temperature

side-channel attacks, we propose a novel thermal management methodology on Dy-

namic Voltage Frequency Scaling (DVFS) [Aalsaud et al., 2016a, Reddy et al., 2017, Dey

et al., 2019a, Dey et al., 2019c] enabled MPSoCs in an embedded device, and to the best

of our knowledge it is the first documented methodology on securing against thermal

side-channel attacks on DVFS. DVFS helps to reduce the energy consumption by exe-

cuting the workload over extra time at a lower voltage and frequency, which could be

accounted for reduced power consumption. We have coined our proposed methodol-

ogy as D AT E , Defense Against TEmperature side-channel attacks. Another important

advantage of our proposed methodology is that due to the overall reduction of operating

temperature the reliability of the device in terms of lifespan also increases. We have also

performed temperature based side-channel attack on the latest Samsung Galaxy Note

9 [gal, ] (utilizing Exynos 9810 MPSoC [exy, b]) phablet along side Odroid XU4 to show

the efficacy of D AT E by using Covolutional Neural Network (CNN) [Chakradhar et al.,

2010, Chen and Lin, 2014, He et al., 2016] based Deep Learning [LeCun et al., 2015] to

analyze thermal behavior and predict which password is being used for cryptographic

operation.

6.2.1 Contributions

In summary, this chapter makes the following concrete contributions.

1. A new metric to quantify the probability of the embedded device prone to temper-

ature based side-channel attacks.

2. A novel thermal management scheme specific to executing application to secure

against temperature side-channel attacks and improve reliability of the device in

terms of lifespan.

112



3. Motivational case study with a real attack on real hardware platforms such as Galaxy

Note 9 [gal, ] and Odroid-XU4 [odr, b].

4. Implementation and validation of our proposed methodology on the real hard-

ware platform (Odroid-XU4) using several benchmark applications.

The rest of the chapter is organized as follows. Sec. 6.3 describes the threat model

based on temperature side-channel attack. Sec. 6.4 describes the problem definition

and introduces some key terms useful to understand the proposed methodology along

with the hardware/software infrastructure used in the research. In Sec. 6.5, we discuss

the proposed methodology along with associated block diagram and algorithms. Sec.

6.7 explores the different experimentation and evaluation performed to prove the effi-

cacy of our proposed methodology while discussing the future scope of this research

(Sec. 6.8). Finally, Sec. 6.9 summarizes the chapter.

6.3 Threat Model

Figure 6.3: Diagrammatic representation of the threat model based on temperature side-
channel attack, where PE represents the processing elements of the smartphone utiliz-
ing MPSoC, H represents the hacker & U represents the user of the smartphone utilizing
MPSoC

In this section, we explore the threat model in MPSoC enabled smartphone by lever-

aging temperature side-channel attack. Millions of smartphones are jail-broken around
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the world so that enhanced applications (apps) could be installed by the users. In 2013,

more than 14 million iOS devices were jail-broken for the same purpose [jai, ]. In 2014,

Android Headlines reported that over 27.44% of Android users rooted their smartphones

[Lucic, 2014], whereas, a more recent survey performed by Android Authority shows that

19.72% of Android users have their device rooted [Simons, 2022]. These surveys show

that a lot of Android smartphone users, who have rooted their phone, could be poten-

tially vulnerable to different types of attacks [Sinicki, 2022].

Injecting malicious code into popular apps on un-authorized app stores are com-

mon among hackers [Kumar, 2017, Yang, 2017, Carlon, 2017]. Any malicious person or

a hacker could inject malicious code in smartphone apps and then allow unsuspecting

smartphone users with rooted device to install and use such apps. Thus, allowing the

hacker to utilize the injected malicious code in the app to snoop activities such as power

consumption and thermal behaviour of the processing elements (PEs) such as CPUs.

Separately, it is also important to mention that modern Android devices comes with

Google Autofill [goo, 2023], which is the default password manager on Android, and it’s

integrated with Google Chrome and other apps. Google Autofill helps the smartphone

users store and manage their passwords on the device by securely storing them on-

device/on-cloud by encrypting the passwords used by the user. However, encryption

is a process that is executed on CPUs, thus, power consumption or thermal behaviour of

the processing CPU could lead to information leakage about the password being used

for encryption (as established in Sec. 2.6 of Chapter 2).

Below we can observe one possible threat model that hackers could leverage to per-

form temperature based side-channel attack on rooted smartphones.

Assumptions: Let’s assume that in the MPSoC enabled smartphone there are n number

of heterogeneous PEs (denoted as p) consisting of big & LITTLE CPU cores. There is a

hacker, H , and a user, U , who owns the smartphone.

Objective: The objective of H is to predict which password is being used by U in his/her/them

smartphone.

Threat: Fig. 6.3 shows the threat model in a diagrammatic representation. The hacker,

H , can install malicious code in a popular mobile app that could be downloaded from

non- Apple or Google authorized app stores and similar services. Upon installing the

app by the user, U, this malicious code is embedded on to one of the LITTLE cores and

it monitors the temperature of the CPU cores on the MPSoC, especially for banking or

disk storage related apps (such as password manager). Most modern MPSoCs come

equipped with temperature sensors on processing elements like CPU & GPU. For ex-

ample, Exynos 5422 has individual temperature sensor on each of the big CPUs [exy,
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a]. These temperature sensors provide information on thermal activity of the respective

component and helps with thermal management of the system. Here, embedding ma-

licious code on the CPU means that the task associated with the malicious code is pro-

cessed on one of the CPUs by attaching the task to it. The malicious code can then relay

the thermal behaviour of the CPUs while executing different applications in incognito

mode back to H after snooping. Sophisticated hackers might try to predict the password

being used by analyzing the thermal behaviour of the CPUs. Often times Internet con-

nectivity might be poor or not available on the smartphone and H can choose to train

CNN models (online/offline) based on the thermal activity of the CPUs cores while ex-

ecuting banking apps on different passwords (more details in training CNN models for

this purpose is in Sec. 6.6.1). Since, the malicious code snoops for thermal activity on the

CPUs, thus, this approach of threat is considered as temperature side-channel attack. In

such a threat model, the malicious app can detect the password being used by the user,

U , of the smartphone and upon confirming the password it could be relayed back to the

hacker such that the hacker can pursue more targeted attack on the user. In Fig. 6.3, the

processing element highlighted in red is the affected CPU on which the malicious code

is embedded. More details on predicting passwords in real smartphones are provided in

Sec. 6.6.

Security: The goal is to secure the device from temperature based side-channel attack

with respect to the aforementioned threat-model. The problem formulation based on

temperature side-channel attack is provided in the next section.

6.4 System model and problem formulation

In this section, we explore the specific system model being used for the research and

define the problem formulation, which forms the foundation of the proposed method.

6.4.1 Hardware & Software Infrastructure of Galaxy Note 9

Nowadays heterogeneous MPSoCs consist of different types of cores, either having the

same or different instruction set architecture (ISA). Moreover, the number of cores of

each type of ISA can vary based on MPSoCs and are usually clustered if the types of

cores are similar. For this research, we have chosen an Asymmetric Multi-processors

(AMPs) system-on-chip (AMPSoC), which has clustered cores on the system. We chose

to execute a real attack on Galaxy Note9 [gal, ], which is the latest mobile device from

Samsung and utilizes the Exynos 9810 MPSoC [exy, b]. This is the same MPSoC that we

have mentioned in Chapter 4, Sec. 4.3.1.
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Exynos 9810 has two CPU clusters, one for big CPU cores consisting of 4 Mongoose 3

CPU cores, and the other cluster for LITTLE CPU cores consisting of 4 Cortex A-55 CPU

cores. The Mongoose 3 CPU cores allow cluster wise DVFS and has 18 frequency scaling

levels ranging from 650 MHz to 2704 MHz (2704 MHz, 2652 MHz, 2496 MHz, 2314 MHz,

2106 MHz, 2002 MHz, 1924 MHz, 1794 MHz, 1690 MHz, 1586 MHz, 1469 MHz, 1261

MHz, 1170 MHz, 1066 MHz, 962 MHz, 858 MHz, 741 MHz, 650 MHz). Whereas, the

LITTLE Cortex-A55 CPU cores has 10 frequency scaling levels ranging from 455 MHz to

1794 MHz (1794 MHz, 1690 MHz, 1456 MHz, 1248 MHz, 1053 MHz, 949 MHz, 832 MHz,

715 MHz, 598 MHz, and 455 MHz).

The Galaxy Note 9 was running on Android 9 (Pie) [and, ] OS utilizing Linux kernel

version 4.9.59, which has only one governor named schedutil based on Energy Aware

Scheduling (EAS) [eas, ]. The Galaxy Note 9 is only utilized for this case study to prove

the threat of thermal side channel attack in real popular commercial device.

6.4.2 Hardware & Software Infrastructure of Odroid XU4

We chose Odroid XU4 [odr, b] development board, as mentioned in Chapter 4, Sec. 4.7.1,

to execute the attack in order to verify the affect and scalability of thermal side-channel

exploitation on a device other than Galaxy Note 9. We also used Odroid XU4 for the rest

of the experimentation and validation because of more availability of software execution

support since Galaxy Note 9 is vendor locked to only modify certain portions of the An-

droid OS. Odroid XU4 employs the Samsung Exynos 5422 [exy, a] MPSoC. As mentioned

earlier Exynos 5422 MPSoC contains clusters of big and LITTLE cores. This MPSoC pro-

vides DVFS feature per cluster, where the big core cluster has 19 frequency scaling levels,

ranging from 200 MHz to 2000 MHz with each step of 100 MHz and the LITTLE cluster

has 13 frequency scaling levels, ranging from 200 MHz to 1400 MHz, with each step of

100 MHz.

The Odroid XU4 was running on UbuntuMate version 14.04 (Linux Odroid Kernel:

3.10.105) and executing the performance governor.

6.4.3 Problem formulation

If we assume that there are n number of processing elements (p) in the MPSoC and P

represent the set of all the processing elements then we get Eq. 6.1

P = {p1, p2, ....pn} (6.1)
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Now, if we consider bi be the baseline temperature for a processing element pi , where

baseline temperature is the temperature of the corresponding processing element i on

the MPSoC while idle, and ti be the maximum operating temperature of pi while exe-

cuting a task T , then we get the formula for Baseline Temperature Difference (BT D) for

pi for task T as Eq. 6.2.

BT Dpi =
∣∣ti −bi

∣∣ (6.2)

If S(BT D) be the set of all Baseline Temperature Difference for all processing ele-

ments for a particular task T in the system such that S(BT D) = { BT Dp1 ,BT Dp2 , ....BT Dpn , },

then from the Eq. 6.2 we can deduce the equation for Baseline Maximum Thermal De-

viation (τ) as follows:

∀pi ∈ P : τ= max( S(BT D) ) (6.3)

Let’s assume that the temperature difference (di ) between any two processing ele-

ments such as tk and t j be the average operating temperature of pk and p j , respectively,

while executing a task T , then we get the following equation:

di =
∣∣∣t j − tk

∣∣∣ (6.4)

Now, for all the processing elements P we will achieve n!
2(n−2)! combinations of tem-

perature difference between any two processing elements in the system. If we consider

Spatial Processing Temperature Differences (SPT D) be a set containing all the combina-

tions ( n!
2(n−2)! ) of temperature differences between the processing elements while execut-

ing a task T then we could derive the formula for Spatial Maximum Thermal Deviation

(ω) as follows:

∀pi ∈ P : ω= max( SPT D ) (6.5)

For quantifying the security of a MPSoC against temperature side-channel attacks,

we can derive an equation from the values of τ, ω and the frequency of thermal cy-

cle during execution of task T (θ). The reason to choose these three variables (τ, ω

& θ) is that from our experiments (described in Section 6.4.4) we observed that these

three variables are directly correlated to thermal behavior of the processing elements.

We define the security against temperature side-channel attacks as Thermal-Security-

in-Multi-Processors (T SMP ), shown in Eq. 6.6.
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T SMP = 1

τ+ω+θ
∣∣∣ 0 < T SMP < 1 (6.6)

In Eq. 6.6 if the value is closer to 1 then it means that the device is more secure

against temperature side-channel attacks, whereas, as value closer to 0 means that the

device is more prone to security threats related to temperature side-channel. We also

have to keep in mind that (τ+ω+θ) can never be ∞ or 0 in reality nor the value of τ, ω

and θ could be decimal as per our platform. Now, from the Eq. 6.6 in order to improve

the security of a device against temperature side-channel attacks our main objective is

to keep the total value of (τ+ω+θ) as low as possible such that the value of T SMP is as

close to 1 as possible. Therefore, we could define our problem as follows.

Given: An application and a MPSoC platform with DVFS support.

Find: Maximum value of T SMP .

Subject to: Meeting performance requirement of each application within available MP-

SoC resources.

Figure 6.4: Observations of thermal behavior of four ARM Cortex A15 (big) CPUs on
Odroid XU4 while performing RSA encryption and decryption

6.4.4 Importance of τ,ω and θ in TSMP metric

To understand the key factors that are related to establishing thermal side-channel at-

tacks on a MPSoC such as Odroid XU4 [odr, b] , we performed RSA encryption and de-

cryption several times on the platform and observed the thermal behavior of the four

ARM A15 (big) CPU cores. On the Odroid XU4, the 8 CPU cores (big.LITTLE) are de-

noted as CPU 0, CPU 1 to CPU 7, where CPU 0 to CPU 3 are ARM A7 (LITTLE) cores and

CPU 4 to CPU 7 are ARM A15 (big) cores. We are only performing the encryption and
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decryption on one of the big CPU cores (CPU 6) so that we could observe the thermal

behavior on the other neighboring idle CPU cores (CPU 4, 5 and 7). Fig. 6.4 shows one

such instance of the experiments performed where we are observing the thermal behav-

ior 3 seconds before the RSA encryption and decryption is executed till 2 seconds after

the execution completes. In Fig. 6.4 we have highlighted three important observations

(see Observation 1, 2 and 3 in the figure), which were common in all the experiments

performed. On the Y axis of Fig. 6.4 we could notice the temperature in degree centi-

grades of each of the A15 CPU cores, colour coded separately for individual CPU cores,

and the X axis represents the time interval with 100 milliseconds gap between each in-

terval. In Observation 1 we could notice that the temperature drastically increases on

CPU 6 within 3 seconds and the most important thing to notice here is that not only

the temperature of CPU 6 increases but at the same time temperature of all neighboring

A15 CPU cores (CPU 4, 5 and 7) also increase. The reason for this phenomenon is due to

heat dissipation and propagation in the lateral direction. In Observation 2 we can notice

that once the encryption and decryption complete on CPU 6 the temperature plummets

not only on that core but also on the neighboring cores. Although in this observation it

could be noticed that temperature plummets over 2 seconds and not instantaneously.

As stated by Masti et al. [Masti et al., 2015], thermal covert channels can be exploited

by observing the exponential rise and fall of CPU temperature. Therefore, Observation

1 and Observation 2 proves the theory proposed in the study [Masti et al., 2015]. More

importantly, Baseline Maximum Thermal Deviation (τ) and Spatial Maximum Thermal

Deviation (ω) directly reflect the issues mentioned in Observation 1 and 2 of Fig. 6.4.

More interestingly, if we notice Observation 3 (3.A and 3.B) we can find that when-

ever there is a spike in temperature on CPU 6 there is also a spike in temperature on the

neighboring CPUs due to heat propagation. Thus proving that when the temperature

of one CPU core increases, due to heat propagation from that CPU core to the nearby

CPU cores the thermal behavior of these adjacent cores are also affected. Therefore,

potentially opening up a vulnerability if one such adjacent CPU core could be used to

establish a temperature side-channel attack.

Since, τ and ω reflect the temporal as well as spatial thermal gradient difference of

the CPU cores while they are executing a task (or set of tasks) and being idle, the afore-

mentioned variables are very important in understanding the vulnerability of MPSoCs

against temperature side-channel attack. Whereas, the frequency of thermal cycle dur-

ing execution of a task (or set of tasks) (θ) directly reflects the phenomenon of Obser-

vation 3 (3.A and 3.B) and hence θ also plays an important role in deducing vulnera-
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bility related to temperature side-channel attack. Therefore, it is crucial to define the

Thermal-Security-in-Multi-Processors (TSMP) metric incorporating τ, ω and θ.

6.5 Proposed Methodology: DATE

6.5.1 Overview of DATE

An overview of the proposed DATE methodology is illustrated in Fig. 6.5. It has some of-

fline and online steps. During offline profiling computed results for various applications

are used to identify the appropriate temperature (tAppi ) and frequency ( f Appi ) such that

a cumulative least value for (τ+ω+θ) (see Eq. 6.6) is achieved. Since for each application

we have to explore all the possible frequency values along with appropriate temperature

and performance threshold such that TSMP is maximum for Appi , we do the profiling

offline as part of the design space exploration. Once we have found out the best possi-

ble frequency and temperature which yields the least value for (τ+ω+θ), we save the

frequency and temperature values along with some other parameters. These values are

later used during the online step where we set the frequency and temperature threshold

of the system to these saved values. In DATE, we call the offline step as Learning Module

whereas, the online step is called as Decision Module. Since, operating temperature of

the device directly affects the reliability of such device in terms of lifespan, hence, DATE

methodology affects the reliability of the device in a positive manner (more details in

Sec. 6.7.3).

6.5.2 Learning Module

The complete algorithm explaining the working of Learning Module is provided in Algo.

11.

In the study [DeVogeleer et al., 2014] through experiments on real devices, it was

noticed that on MPSoCs power and temperature follow a relationship of quadratic func-

tion. Moreover, in DVFS enabled MPSoCs dynamic power and frequency follow a quadratic

relationship due to the power consumption (P ∝V 2f ) being directly affected by the op-

erating frequency and voltage [Singh et al., 2020,Dey et al., 2020,Isuwa et al., 2019]. Here,

quadratic relationship is mentioned in terms of algebraic equation/graph. However, to

make our approach fast during run time (Decision Module) we assume that frequency

and temperature follows a linear relationship represented by Eq. 6.7.

ti =α× fi +β (6.7)
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Figure 6.5: Proposed Methodology: DATE
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In Eq. 6.7, fi is the operating frequency at time instance i , ti is the operating temperature

at the same time instance, α is the relationship variable and β is the intercept variable.

Now, we first set a performance deadline (for our case we choose execution time

deadline for each application) and then start executing Appi and vary the frequency

as well as the temperature threshold of the system to observe the performance. Here,

the temperature threshold is the operating thermal cap, which can not be surpassed

by the system during the execution of the application. If we consider tavai l able is the

set of all available operating temperature (tavai l able = {t1, t2, ...ti }) of the system, which

will be used as the thermal cap during the profiling, then for each instance of operating

temperature (tavai l ablei ) from tavai l able we monitor the performance while setting the

temperature threshold to tavai l ablei .

While monitoring performance the frequency of the PEs is reduced by one frequency

scaling step (we start at the maximum frequency and this is denoted as ReduceFrequen-

cyByOneStep() in Algo. 11) and returns the reduced frequency instance ( fi ). We monitor

the temperature of each PE (denoted as MeasureTemperatureValue() in Algo. 11) and re-

turns the set of temperature values of all the PEs during the profiling. If the performance

deadline for the application is met then the maximum value among the set of tempera-

ture is used as the temperature threshold. By this approach we leverage DVFS capability

of the system and modify the frequency till the performance constraint is met and try to

achieve least possible values for τ , ω and θ. After we have found the appropriate value

of system’s temperature threshold/cap (tAppi ) and frequency ( f Appi ) we note the value

of α and β (from Eq. 6.7). For Appi the relationship variable and intercept are denoted

by αAppi and βAppi respectively. For each profiled application we only save the values

of maximum operating temperature threshold/cap (tthr eshol dAppi
) which should not be

surpassed during the execution of Appi , operating frequency ( f Appi ), αAppi , βAppi and

baseline temperature (bAppi ) during the profiling period on the memory to be used in

the Decision Module. Here, the baseline temperature (bAppi ) for the profiling application

is the same baseline temperature, which is recorded before and after the application is

executed such that bAppi = bi in Eq. 6.2. In practice, we actually save the value of bAppi

for each processing element in the system as a set of baseline temperatures (B Appi ).

6.5.3 Decision Module

The algorithm for Decision Module is provided in Algo. 12. In the Decision Module,

a software agent, which we call as DATE as well, first loads the baseline temperature

(bAppi ) for the profiled application and compares the current temperature with base-

line temperature during this time instance (bnow ). The set of baseline temperatures
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Algorithm 11: Learning Module Execution
Input:
1. Per fmax : performance deadline for an application instance Appi

2. Bi : a set of baseline temperature (bi ) for each processing element (PE)
Output: < tthr eshol dAppi

, f Appi ,αAppi ,βAppi ,B Appi >
Initialize: τ+ω+θ = ∞;

foreach tavai l ablei in tavai l able of the system do
tthr eshol dAppi

= tavai l ablei ;
%Per f Appi is the current performance of the application%
while Per f Appi ≤ Per fmax do

fi = ReduceFrequencyByOneStep(); (see Sec. 6.5.2)
Ti = MeasureTemperatureValue();
τi = CalculateTau(Bi ); %see Eq. 6.3%
ωi = CalculateOmega(Bi ); %see Eq. 6.5%
θi = CalculateTheta(); %see Sec. 6.5.2%
if (τi +ωi +θi ) < (τ+ω+θ) then

τ = τi , ω = ωi , θ = θi ;
tthr eshol dAppi

= max(Ti ), f Appi = fi ;

end
end
<αAppi ,βAppi > = CalculateAlphaBeta(tthr eshol dAppi

, f Appi ); (Sec. 6.5.2)

end
return < tthr eshol dAppi

, f Appi ,αAppi ,βAppi ,B Appi = Bi >;

for all PEs is Bnow . Since baseline temperature can vary depending on the surround-

ing and other unforeseen circumstances, it is important DATE is aware of the difference

between the baseline temperature when the application was profiled and the baseline

temperature for the time period when the Decision Module of DATE acts and could be

represented as bdi f f = bAppi −bnow . For set of PEs it is Bdi f f .

Now, if we assume that the value of α and β remains almost same (subject to some

obvious deviation and we refer to it as error) then from Eq. 6.7 we can get the equation

(see Eq. 6.8) that could define the relationship between two different operating temper-

ature and their associated frequencies.

f2 = (t2 − t1)

α
+ f1 (6.8)

We can modify the Eq. 6.8 to reflect the governing equation (see Eq. 6.9) to decide

the operating temperature threshold and associated frequency by DATE.

fdesi r ed =
(tdesi r ed thr eshold − tthr eshol dAppi

)

α
+ f Appi

(6.9)
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If the value of bdi f f is negative then DATE reduces the operating frequency by evalu-

ating the new operating frequency value while considering that bdi f f = (tdesi r ed thr eshold−
tthr eshol dAppi

) in Eq. 6.9. But if the value of bdi f f is positive then Eq. 6.9 could be modi-

fied as follows:

fdesi r ed = (tdesi r ed thr eshold +bdi f f )

α
+ f Appi

(6.10)

If the value of calculated fdesi r ed is more than the available frequency of the CPU

cores then DATE do not modify the operating frequency, thus, fdesr i ed = f Appi but mod-

ifies the operating temperature threshold as tdesi r ed thr eshold = bdi f f + tthr eshol dAppi
.

While executing the application, if the operating temperature of the CPU cores tries to

go higher than the operating temperature threshold (tdesi r ed thr eshold ) then DATE drops

the frequency ( fdesi r ed ) to next frequency scaling level, which is again evaluated from

the Eq. 6.8 by assuming that the operating temperature of the system needs to be re-

duced by 1° Centigrade. The governing equation to achieve this is as follows:

fdesi r ed = fnow − 1

α

wher e, tdesi r ed − tnow =−1
(6.11)

6.6 Case Study: Performing a real attack on Galaxy Note9
and Odroid XU4

We performed a real attack on the Galaxy Note 9 mobile device (as mentioned in Sec.

6.4.1), which is one of the top rated smart phones of 2018 and 2019 [top, a, top, b]. To

prove the scalability and affect of the attack we also executed the same methodology on

Odroid XU4 (as mentioned in Sec. 6.4.2). We executed a program sitting on one of the

LITTLE cores on the device, while snooping the thermal behavior of the big core cluster

during several encryption (AES-256 [Rijmen and Daemen, 2001]) operations of a text file

with 4 of the most common passwords used by the users. The main motive of this attack

is to evaluate the vulnerability of the latest smart-phone against thermal side-channel

attack. More details on the device, experimental setup and evaluation of the attack is

provided in the following subsections.
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Algorithm 12: Decision Module Execution
Input:
< tthr eshol dAppi

, f Appi , αAppi , βAppi , B Appi > & Bnow

Bdi f f = CalculateBaselineDiff(B Appi , Bnow ); (Sec. 6.5.3)
foreach PE (Pi ) in the set of PEs (P) on the system do

bPEdi f f = GetBaselineDiff(Bdi f f , Pi ); %Function to get the baseline difference
(bPEdi f f ) for Pi

if bPEdi f f > 0 then
fdesi r ed = CalculateDesiredFrequency(bPEdi f f ); (using Eq. 6.10)
SetFrequencyOfPE( fdesi r ed ); %Function to set the frequency of the PE with the

value of fdesi r ed %
SetTempThres(tthr eshol dAppi

); %Function to set the maximum thermal cap of the
PE as tthr eshol dAppi

%

end
else

fdesi r ed = CalculateDesiredFrequency(bPEdi f f ); (using Eq. 6.11)
% fPEmax is the maximum frequency of the PE%
if fdesi r ed > fPEmax then

fdesi r ed = f Appi ; SetFrequencyOfPE( fdesi r ed );
tdesi r ed thr eshold = bPEdi f f + tthr eshol dAppi

;
(see Eq. 6.10 and Eq. 6.11)
SetTempThres(tdesi r ed thr eshold );

end
else

SetFrequencyOfPE( fdesi r ed );
SetTempThres(tthr eshol dAppi

);

end
end

end

6.6.1 Dataset and CNN Model

To perform the attack we chose 4 of the 25 most common passwords of 2017 and 2018

[com, b, com, a] as surveyed by the Internet security firm SplashData. The 4 common

passwords used by the user, which are chosen for our attack, are 123456, passw0rd,

111111 and football. We executed AES-256 [Rijmen and Daemen, 2001] encryption on a

text file using the aforementioned passwords 500 times for each password. The reason

to choose AES-256 is because of its popularity. The encryption operations were per-

formed on the 4 Mongoose 3 big CPU cores (big CPU cluster) while one of the LITTLE

cores snoop the operating temperature data of the big CPU cluster. This is due to the fact

that only one thermal sensor is present on the big CPU cluster of Galaxy Note 9 rather

than individually placed on each big CPU core. After the temperature data for each pass-

word were collected, we transformed the data points into a graphical representation in
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order to be fed to a pre-trained CNN [Pan et al., 2010] for training and classification pur-

poses. Since on the Odroid XU4 thermal sensors are individually placed on each big

CPU cores, we chose to only record the thermal behavior of one of the big CPUs (CPU 7)

for this experimental attack. It should be kept in mind that the length of the password

that is being used for encryption does not matter with this approach (as mentioned in

Sec. 6.3). When encryption is performed on the CPU, thermal behaviour of the CPU

during the encryption process is observed, recorded and then transformed to graphical

representation such that the dataset could be used to train the pre-trained CNN.

We chose ResNet50 CNN [He et al., 2016] as our network model, which could be used

to train our graphical thermal data using Transfer Learning [Pan et al., 2010]. Since, CNN

based Deep Learning usually requires a lot of training data in order to be used success-

fully for classification purposes, the network models are trained on large dataset such

as ImageNet [Russakovsky et al., 2015], consisting of millions of images, and then the

weights and parameters of the model are saved and used later to train for a specific tar-

get application. This way of training is called transfer learning and we have used ResNet

50, which is pre-trained on ImageNet. Since, ResNet50 is pre-trained on ImageNet and

has the last fully connected layer to classify 1000 different classes/labels from the Ima-

geNet, we had to modify the last fully connected layer to suit our target application.

Since, we have 4 passwords as the classes/labels to classify, we removed the last fully

connected layer, which was pre-trained on ImageNet, to cater for only 4 labels instead.

We have also added a new fully connected layer (called Dense in Fig. 6.6), dropout reg-

ularization (called Dropout in Fig. 6.6) and a softmax function along with a classifier

(called PREDICTIONS in Fig. 6.6) to only predict for 4 passwords (labels). In Fig. 6.6 we

have shown the modified fully connected layer along with the custom classifier used in

our ResNet50 CNN model. Here, the dropout regularization is used for better generaliza-

tion and the softmax function is used for probability distribution for the 4 labels/classes.

In Fig. 6.7, we show the graphical representation of the thermal behavior for each pass-

word label, which is fed to the ResNet50 CNN model for training and classification pur-

pose.

From the 500 graphical data for each password label, we separated 100 graphical data

for cross-validation testing purpose. Whereas 75% of the remaining 400 graphical data

for each password label were used for training and rest of the 25% is used for validation

during the training period. Validation data is used to provide an unbiased evaluation of

a model fit on the training dataset while tuning hyperparameters of the model.

It should also be kept in mind that CNNs are extremely good in automatically un-

derstanding features and patterns from the input image and hence, we have used CNNs
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Figure 6.6: Architecture of ResNet50 CNN model with modified last fully connected layer
used in password classification
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(a) 123456 (b) 111111

(c) passw0rd (d) football

Figure 6.7: Graphical representation of thermal behavior (time interval vs temperature
in °C) of encryption operation using the following passwords: 111111, 123456, passw0rd
& football

for the purpose so that the CNN model could learn patterns associated with encryption

process and thus, lead to prediction of the respective password.

6.6.2 Predicting passwords

After training the ResNet50 model with the training and validation dataset from Note

9, the total prediction accuracy achieved is 36.50%. When we used 400 graphical data

(100 data from each password label) for cross-validation to evaluate the accuracy of the

trained ResNet50 CNN in predicting the password being used for encryption operation,

the CNN could predict 146 instances correctly and achieving a prediction accuracy of

36.50%. Whereas, when we implemented DATE on the system to improve the security

against thermal side-channel on Note 9 and performed the same training methodology

with the CNN, the prediction accuracy achieved by the CNN model after the training is

26.75%. When we used the 400 graphical data for cross-validation the CNN was only
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able to successfully predict 25.25 % (101 out of 400 data). Hence, using DATE to secure

the system against thermal side-channel attack such as the one performed in this sec-

tion, we are able to achieve 9.75% (for training process) and 11.25% (for cross-validation)

increase in security.

When we performed the same training on the thermal data collected from Odroid

XU4, the CNN achieved a training prediction accuracy of 56.75% when DATE was not

implemented on the system. The CNN was also able to predict 52% of the 400 graphical

data (208 out of 400) during the cross-validation. After we implemented DATE on the

Odroid XU4 the training prediction accuracy achieved by the CNN is 26.75% and was

able to predict 29.5% of the 400 data (118 out of 400) during cross-validation. There-

fore, using DATE we are able to achieve an increase in security against thermal side-

channel by 30% during training period and an increase in security by 22.5% during

cross-validation.

In order to determine whether our CNN is classifying the thermal data based on the

features of the thermal peaks, we utilized Gradient-weighted Class Activation Mapping

(Grad-CAM) [Selvaraju et al., 2017] to visualize in which areas of the graphical data the

CNN was focusing on to predict which password is being used for encryption process.

Grad-CAM methodology uses the gradient of the target classes flowing into the last con-

volutional layer to produce a coarse localization map highlighting the important regions

in the image (graphical data) for predicting the class label. Fig. 6.8 shows the thermal

graphical data generated while encrypting the plain text using 111111 as password (Fig.

6.8.(a)) and the subsequent localization mapping created from the last convolutional

layer (Fig. 6.8.(b)) and then portraying the region of interest as thermal map on the

original image (Fig. 6.8.(c)). Fig. 6.9, 6.10 and 6.11 consequently show the Grad-CAM

generated for thermal behavior of the big CPU for individual password’s (123456, foot-

ball and passw0rd) encryption process. From the Grad-cam representation it is evident

that our CNN is actually looking at certain thermal peaks to determine which password

might have been used for encryption and hence, predict the label accordingly.

6.7 Experimental and Evaluation Results

6.7.1 Hardware & Software Setup for Experiments

Odroid XU4 could be utilized to run on both Android and Linux operating systems, and

hence, we chose to perform most of our experiments on Odroid XU4 running on Linux

OS. Further, since Linux is more versatile OS than Android and provides the ability to
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(a) (b) (c)

Figure 6.8: Focus area of ResNet50 network on a representative graph of password:
111111

(a) (b) (c)

Figure 6.9: Focus area of ResNet50 network on a representative graph of password:
123456

(a) (b) (c)

Figure 6.10: Focus area of ResNet50 network on a representative graph of password:
Football
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(a) (b) (c)

Figure 6.11: Focus area of ResNet50 network on a representative graph of password:
passw0rd

execute several established benhcmark suits such as PARSEC [Bienia, 2011a] unlike An-

droid, we chose to use Linux for the experimentations provided in this section to show

the efficacy and scalability of DATE.

For multi-core systems, multi-threaded applications are heavily used in recent times

to represent workloads as they could leverage concurrency and parallel processing. Ex-

amples of such applications are available in several benchmarks such as PARSEC [Bi-

enia, 2011a]. For our experiments we have tried several applications from the PAR-

SEC benchmark such as Streamcluster, Blackscholes, Facesim etc. but to evaluate the

effectiveness of our D AT E mechanism we chose Blackscholes and Streamclsuter with

nati ve option because it closely represented a real-world mixed (compute and mem-

ory intensive) workload application and the execution period was long enough to ob-

serve the thermal behavior in the system. We also evaluated our approach for other

real-world workload such as playing a Youtube video on the Chromium browser and

RSA [Rivest et al., 1978] encryption and decryption algorithm for 512, 1024, 2048 and

4096 bits. We have run all our experiments on UbuntuMate version 14.04 (Linux Odroid

Kernel: 3.10.105).

6.7.2 Experimental Results

In Fig. 6.12, 6.13 and 6.14 we can see step by step evaluation of Baseline Maximum

Thermal Deviation (τ), Spatial Maximum Thermal Deviation (ω) and frequency of ther-

mal cycle (θ) during execution of the application for different applications using DATE.

In Fig. 6.12 Base T. represents the baseline temperature for different ARM Cortex A15

CPUs.

Table 6.1 shows TSMP values for different applications when various resource man-

agement methodologies are employed. We evaluated DATE against ondemand and per-
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Base. T. OnDemand Performance MRPI DATE OnDemand Performance MRPI DATE OnDemand Performance MRPI DATE OnDemand Performance MRPI DATE
CPU 4 61 76 78 76 68 95 95 90 90 83 86 84 74 91 90 91 84
CPU 5 64 75 75 76 65 88 92 93 86 78 75 84 82 87 86 86 80
CPU 6 68 84 85 84 72 96 95 96 90 86 86 77 82 96 90 95 90
CPU 7 62 82 82 72 67 95 95 95 92 89 81 80 77 95 94 95 88

Base. T. Diff CPU 4 15 17 15 7 34 34 29 29 22 25 23 13 30 29 30 23
CPU 5 11 11 12 1 24 28 29 22 14 11 20 18 23 24 22 16
CPU 6 16 17 16 4 28 27 28 22 18 18 9 14 28 22 27 22
CPU 7 20 20 10 5 33 33 33 30 27 19 18 15 33 32 33 26

τ 20 20 16 7 34 34 33 30 27 25 23 18 33 32 33 26

Blackscholes Streamcluster RSA Youtube

Figure 6.12: Table showing maximum operating temperature of ARM A15 (big) CPUs for
different applications along with baseline temperature and values of Baseline Maximum
Thermal Deviation (τ) for corresponding CPUs

OnDemand Performance MRPI DATE OnDemand Performance MRPI DATE OnDemand Performance MRPI DATE OnDemand Performance MRPI DATE
CPU 4 60 62 62 61 62 64 64 65 64 56 62 60 69 59 63 59
CPU 5 61 63 63 61 63 65 67 64 65 57 65 61 66 60 63 60
CPU 6 64 65 65 64 66 67 65 69 68 59 65 67 70 63 65 65
CPU 7 61 62 62 62 62 64 64 67 64 56 64 63 67 59 62 63
ω 21 20 19 8 33 31 31 25 25 30 22 21 28 35 33 25

Blackscholes Streamcluster RSA Youtube

Figure 6.13: Table showing least average operating temperature of ARM A15 (big) CPUs
for different applications and values of Spatial Maximum Thermal Deviation (τ) for cor-
responding CPUs

Table 6.1: TSMP values for different methodologies

App OnDemand Performance MRPI DATE

Bl ackscholes 0.001968 0.001124 0.001792 0.003496
Str eamcl uster 0.000479 0.000450 0.000846 0.001146

RS A 0.001811 0.002439 0.001912 0.002544
Y outube 0.001661 0.002840 0.002906 0.003012

formance governor of Linux and the state-of-the-art methodology proposed in [Reddy

et al., 2017]. In [Reddy et al., 2017], the researchers have proposed a workload manage-

ment system, which classifies workloads of the executing applications based on Memory

Reads Per Instruction (MRPI) metric and manages DVFS levels of cores based on it.

RSA encryption and decryption was performed for 512, 1024, 2048, 4096 bits for 10

secs for each types. Based on the TSMP values in Table 6.1 DATE is 4.30% more secure

for RSA encryption and decryption than the Linux Performance Governor. Whereas,

DATE is 139.24% more secure for Streamcluster benchmark against temperature based

side-channel attacks than the Linux Performance Governor. DATE is also 35.46% more

secure than MRPI [Reddy et al., 2017] for the Streamcluster benchmark.

Fig. 6.15 graphically shows the temperature peaks achieved for the Blackscholes ap-

plication using DATE, which closely resonates with baseline temperature (see Fig. 6.1).

In Fig. 6.15, the 3D plot view is shown such that it is easier to get a holistic view of the
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Figure 6.14: Frequency of thermal cycles for different benchmarking applications on
different power and mapping schemes
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Figure 6.15: Temperature peaks of 4 ARM A15 big CPU cores while executing Blacksc-
holes benchmark using DATE
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Figure 6.16: Temperature peaks of 4 ARM A15 big CPU cores while executing Blacksc-
holes benchmark using Linux’s Ondemand and Performance governors
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Table 6.2: Thermal cycle reduction comparison with DATE

App OnDemand Performance MRPI

Bl ackscholes 40.57% 67.42% 46.96%
Str eamcl uster 59.59% 62.21% 28.45%

RS A 29.34% -2.91% 23.54%
Y outube 48.15% 2.76% 1.06%

spatial and temporal thermal behaviour of the big CPU cores (CPU 4, 5, 6 & 7). We have

three axes in Fig. 6.15, where the X axis is labelled, “Temperature", represents the tem-

perature of the respective big CPU cores (CPU 4, 5, 6 & 7) in °C; the Y axis is labelled,

“Time interval", represents the execution time interval in milliseconds; and, the Z axis is

labelled, “Frequency", represents the respective frequency of the big CPU cores scaled

to 0.1 MHz). Fig. 6.16 is also represented with similar 3D plot view with similar axes.

In comparison to Fig. 6.15, Fig. 6.16 highlights the temperature peaks achieved for

the Blackscholes application while executing on ondemand (refer to Fig. 6.16.(a)) and

performance (refer to Fig. 6.16.(b)) governors of Linux. From the figures (Fig. 6.16 and

Fig. 6.15) it is also very evident that DATE is able to achieve the reduction in spatial ther-

mal gradient as well as temporal thermal gradient while the overall operating tempera-

ture of the CPUs is also reduced at the same time (also see the histogram comparison in

Fig. 6.17).

Note: For data dependent applications over a network such as playing a video on Youtube

in Chromium browser, it was still difficult to reduce the Spati al T hemal Devi ati on

due to data dependencies over the Internet or due to workload imbalance between the

CPU cores.

Figure 6.17: Histograms of temperature peaks of ARM big CPUs for Blackscholes using
ondemand governor vs DATE (Frequency vs temperature (°C))
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6.7.3 Effect on Device Reliability

Thermal gradient (spatial and temporal) and thermal cycling [Iranfar et al., 2018] play

important role in the reliability of the system in terms of lifespan. The rate of tempera-

ture changes on the system affects the lifespan of the device over time due to degrada-

tion in the structural integrity and chemical property. More importantly, thermal cycle

reduces the whole systems MTTF (Mean-time-to-failure) as the amplitude and/or fre-

quency of thermal cycles increase. The number of the thermal cycles (NT C (i )) that can

result in the occurrence of failure due to the ith thermal cycle can be deduced from the

modified Coffin-Manson equation (see Eq. 6.12) mentioned in [Xiang et al., 2010].

NTC (i ) = AT C (δTi −Tth)−bexp(
EaT C

Tmaxi

) (6.12)

In Eq. 6.12, δTi represents the maximum thermal amplitude change of the ith ther-

mal cycle, Tth is the threshold temperature of the component/device at which inelastic

deformation begins, AT C is an empirically determined constant [Xiang et al., 2010], b

is the Coffin-Manson exponent constant, EaT C is the activation energy and Tmaxi is the

maximum temperature in the ith thermal cycle. Therefore, from Eq. 6.12 we can deduce

the MTTF (MT T FT C ) [Coskun et al., 2008] related to thermal cycle (NTC ) as follows:

MT T FTC = NT C
∑n

i=0 ti

n
(6.13)

In Eq. 6.13, ti is the temperature of the component/device at ith thermal cycle, and

n is the total number (frequency) of thermal cycle. Since, we focused most of the exper-

iments on the Odroid XU4 MPSoC, and if we assume that the number of the thermal cy-

cles (NTC ) that can result in the occurrence of failure due to the ith thermal cycle is same

for the same device platform, then we can easily evaluate the MT T FT C for each execut-

ing application on individual thermal management methodologies. Now, if we take the

example of Blackscholes application being executed on the MPSoC using Linux’s onde-

mand governor and assume that ti is the baseline maximum thermal deviation i.e. ti = τ
since baseline temperature is the same during all the experiments performed during the

time of experimentation, then from Fig. 6.12 and Fig. 6.14 we could notice that ti (τ) is

20 and n (frequency of thermal cycle) is 456. Hence, putting the value of ti and n in Eq.

6.13, we get the value of MT T FTC as NTC×9140
456 . Now, if we consider the DATE methodol-

ogy, where Blackscholes is executed on the Odroid XU4 using DATE, ti is 7 (see Fig. 6.12)

and n is 271 (see Fig. 6.14), then we get the value of MT T FTC as NTC×1904
271 . Therefore,
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comparing the MT T FT C of executing Blackscholes using the Linux’s ondemand gover-

nor and the DATE, the DATE methodology is 2.85 (approx.) (≃ NTC×9140
456 / NTC×1904

271 ) times

more reliable and improve the lifespan of the device over time.

6.8 Discussion

For applications with data dependencies over the Internet such as Youtube or applica-

tions with workload imbalance between the CPU cores, a possible solution to reduce the

Spatial Themal Deviation is to add noise using software/algorithmic implementation to

the temperature variance such that it becomes very difficult to understand the pattern

of execution or data being processed on the CPU cores. Here, noise could be regarded

as another random execution of secondary tasks in order to keep the CPU tempera-

ture high so that temperature dissipated due to execution of the current task could be

masked. The main challenge in using such a solution is that to predict when to add the

noise in order to mask thermal dissipation of the currently executing task properly.

6.9 Summary

In this chapter, we examined the affect of DVFS related to temperature side-channel

attack on CPUs on a MPSoC. We also proposed a universal metric, TSMP, to quantify

security of embedded devices against temperature side-channel attacks and introduced

a novel approach, DATE, to secure DVFS enabled MPSoCs against the same. To prove

the feasibility of such an attack we also performed a real thermal side channel attack

on Samsung Note 9 mobile device and Odroid XU4 development board utilizing convo-

lutional neural network based machine learning approach. Experimental studies were

evaluated on the Exynos 5422 MPSoC in the Odroid XU4 and comparative study with the

state-of-the-art proves the efficacy of DATE in securing the device from thermal side-

channel attack. Moreover, from experimental evaluation we also proved that DATE is

not just effective against temperature side-channel attacks but is also effective to en-

hance reliability in terms of the lifespan of the device.
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Chapter 7

Conclusion

We conclude this thesis by providing a summary of our achievements and impacts as a

result of this research work. We also outline some of the potential future directions for

building on this work.

7.1 Achievements and impact

Low power mobile computing systems such as smartphones and wearables have be-

come an integral part of our daily lives and are being used to achieve a plethora of tasks:

playing mobile games, watching TV shows, managing food, managing our active and

social lives. These devices employ heterogeneous multi-processor System-on-a-Chip

(MPSoC), which comes equipped with different types of multiple processing elements

such as CPU, GPU to cater for the performance and power consumption requirements

of the executing applications on these platforms. Given the fact that these smartphones

and wearables utilizing MPSoC are battery operated most of the times, thus, have lim-

ited power supply, the key challenges include catering for performance while reduc-

ing the power consumption. Moreover, the reliability in terms of lifespan of these de-

vices are also affected by the peak thermal behaviour on the device, and henceforth, it

is also crucial to reduce thermal behaviour of such devices s well. Another important

challenge to address in these devices are security vulnerability and protection against

side-channel attacks, especially temperature side-channel attack. One of the main ap-

proaches to resolve these aforementioned challenges is Dynamic Voltage and Frequency

Scaling (DVFS).

In this thesis, we have examined the effect of DVFS on different processing elements

on the MPSoC. We have also contributed several novel methodologies to perform DVFS

on a combination of CPU, GPU and RAM to cater for the performance requirement of
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the executing applications while reducing the power consumption and peak tempera-

ture and improving security against temperature side-channel attack on the MPSoC. A

brief account of the major contributions of the thesis is as follows.

In Chapter 3, we explored a novel approach, SoCodeCNN, to convert program source

code into machine understandable image using computer vision methodology. Using

this approach program source code of different types of applications could be classified

into three categories: computer intensive, memory intensive and mixed workload (both

compute and memory intensive), by Convolutional Neural Networks without the need

for skilled human’s intervention and henceforth, appropriate DVFS could be performed

on the CPU of the mobile MPSoC to reduce the power consumption of the device. Ex-

perimental results also show that using SoCodeCNN we could classify the benchmarks

from PARSEC, Splash-2, and MiBench in a completely automated manner and with high

prediction accuracy. We also demonstrated the application of using SoCodeCNN per-

form DVFS on CPUs in a real hardware platform utilizing mobile MPSoC to optimize

power consumption.

In Chapter 4, we introduced a power and thermal efficiency agent, Next, for mobile

MPSoCs based on reinforcement learning (RL), which maximizes performance while re-

ducing power consumption and temperature of the mobile applications depending on

the user’s interaction with the display/UI and the desired Quality of Service (QoS). Here,

we also introduced a metric, Performance Per Degree Watt (PPDW), which incorporates

the performance of the executing application, power consumption and peak tempera-

ture of the device. The proposed RL agent performs DVFS on CPU and GPU based on the

PPDW metric to reduce power consumption and temperature of the device. Experimen-

tal evaluation on real hardware platforms shows the efficacy of the proposed approach,

Next, along with its improvement over the state-of-the-art power and thermal manage-

ment scheme.

In Chapter 5, we explored the affects of DVFS on RAM (memory) in the mobile MP-

SoC. Here, we also introduced a heuristic approach, CGM-DVFS, to perform DVFS on

CPU, GPU and RAM. This mechanism is application specific rather than application ag-

nostic and with experimental evaluation we have also showed that it is better suited

to perform DVFS on CPU, GPU and RAM based on profiling of the application due to

the challenges of optimizing power while performing DVFS on CPU, GPU and RAM to-

gether. Experimental results prove the efficacy of CGM-DVFS in reducing power con-

sumption and peak temperature while catering for performance requirement compared

to the state-of-the-art approaches. Through experimental results we have also shown

that application specific profiling approaches such as CGM-DVFS outperform and result
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in closer to optimal power consumption compared to delayed Reinforcement Learning

approaches such as Q-Learning when the system (environment) is dynamic.

In Chapter 6, we explored the effects of DVFS towards the vulnerabilities against tem-

perature (thermal) side-channel attack in the mobile MPSoC. Here, we also proposed

a universal metric, TSMP, to quantify security of embedded devices utilizing MPSoC

against temperature side-channel attacks. We introduced a novel approach, DATE, to

secure DVFS enabled MPSoCs against this type of attack. We also performed a real tem-

perature side channel attack on real mobile devices utilizing machine learning approach

to realize the feasibility of such an attack in commercial products. Experimental studies

evaluated on the real hardware platform and comparative study with the state-of-the-

art proves the efficacy of DATE in securing the device from thermal side-channel attack.

Moreover, from experimental evaluation we also proved that DATE is not just effective

against temperature side-channel attacks but is also effective to enhance reliability in

terms of the lifespan of the device.

7.2 Extensions and future work

We believe this work opens up more questions and avenues to explore than it closes off.

There is much more potential to perform DVFS in mobile MPSoCs to optimize power

and thermal behaviour of the device while securing it from temperature based side-

channel attack. This section highlights some of the potential future research directions

to extend or augment the work presented in this thesis.

7.2.1 Automated program/application classification to perform bespoke
DVFS on CPU, GPU and RAM

In Chapter 3, we have already explored an approach using SoCodeCNN to automati-

cally classify programs / applications into three categories: compute intensive, memory

intensive and mixed workload. We also introduced an automated power management

agent, APM, that performs DVFS on CPU based on the program classification. However,

in this chapter we have only shown one method of automatically classifying programs

and then performing DVFS only on CPU. As we have already established that DVFS on

GPU and RAM alongside CPU could contribute to overall power saving and thermal be-

haviour reduction, this paves the way for researchers to adopt the automated program

classification approach of SoCodeCNN and then develop more holistic DVFS mecha-

nisms for CPU, GPU & RAM.
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On the other hand, it should also be kept in mind that even within the different clas-

sification of programs, not all applications would be needing the same CPU, GPU or

RAM utilization. For example, some compute intensive workload could be dependent

on more GPU rather than CPU and vice-versa. However, given the current state of the

technology it is not possible to get an informed idea of the type of the application with-

out the use of hardware performance counters in mobile computing systems. That said,

given the fact that commercial mobile devices avoid including additional hardware per-

formance counters due to space constraint on the MPSoC, it is much more desirable to

introduce approaches that is capable of doing classification of application in a bespoke

manner where appropriate DVFS on CPU, GPU and RAM could be performed based on

needs to optimize power and thermal behaviour.

7.2.2 Prioritizing QoE alongside QoS

In Chapter 4, we observed that user’s interaction with interactive mobile computing sys-

tems such as smartphones that could lead to different FPS during different interaction

sessions and thus, perform DVFS on CPU & GPU accordingly. However, this work mostly

focuses on generated FPS during interaction sessions and henceforth, focuses on QoS.

That said, we need to keep in mind that when it comes to interactive mobile computing

systems such as smartphones, Quality of Experience (QoE) [Isuwa et al., 2022] plays an

important role as well. QoE, compared to QoS, is a more user-centric concept that en-

compasses the overall satisfaction and perception of a service’s quality by its end users.

QoE focuses on subjective factors and aims to measure the user experience from a holis-

tic perspective. This includes not only the technical aspects of a service, such as FPS,

but also factors such as content quality, and device brightness, as well as the user’s in-

dividual preferences and expectations. Most smartphone users expect a certain level of

QoE while interacting with their smartphones, however, the work proposed in Chapter

4 does not prioritize that. Moving forward this paves the way for researchers to design

DVFS based approaches that are capable of achieving both QoE and QoS requirements.

7.2.3 Reducing exploration time of application agnostic RL approaches

In Chapter 4 and 5, we observed that an RL agent based approach to perform DVFS on

CPU, GPU and RAM would require enough exploration time in a dynamic system (envi-

ronment) to achieve the optimal power consumption and thermal behaviour. However,

this might not be possible for all types of applications, especially the ones with shorter

executing period. Right now, recurrent neural network (RNN) [Mandic and Chambers,
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2001] [Sherstinsky, 2020] such as long short-term memory (LSTM), exhibits good per-

formance in temporal dynamic behavior, and this approach could be utilized in combi-

nation with RL agent to optimize the power consumption and thermal behaviour of the

device in an application agnostic manner without requiring a lot of exploration.

7.2.4 Deep Learning and Reinforcement Learning to secure against
temperature side-channel attack

In Chapter 6, we explored a way to exploit vulnerability of MPSoCs against temperature

side-channel attack using Deep Learning (DL). Currently, in this chapter, DL with CNN

architecture (visual convolutional neural network) is utilized, however, it might be better

use time-series based neural networks such as recurrent neural networks (RNNs), long

short-term memory neural networks (LSTMs), attention-based models [Ekambaram et al.,

2020], etc., without the need of data of the thermal behaviour of PEs to be converted to

visual graphical representation to train the neural network. With the development of

time-series based neural network architecture, the approach could also reduce the la-

tency associated with the generation of visual graphical representation of the thermal

data to be used for training/prediction.

In this chapter, though ResNet50 based DL model is utilized to exploit vulnerability

of MPSoCs against temperature side-channel attack, this also paves the way to propose

more advanced DL and RL approaches to secure against such attack as well. Given the

fact that RL agents can maximize rewards and reach optimal solutions in an application

antagonistic manner, in future, we could observe proposal of such approaches using the

TSMP metric to secure against temperature side-channel attack in the mobile MPSoC.
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