111 research outputs found

    Global biosphere-climate interaction : a causal appraisal of observations and models over multiple temporal scales

    Get PDF
    Improving the skill of Earth system models (ESMs) in representing climate-vegetation interactions is crucial to enhance our predictions of future climate and ecosystem functioning. Therefore, ESMs need to correctly simulate the impact of climate on vegetation, but likewise feedbacks of vegetation on climate must be adequately represented. However, model predictions at large spatial scales remain subjected to large uncertainties, mostly due to the lack of observational patterns to benchmark them. Here, the bidirectional nature of climate-vegetation interactions is explored across multiple temporal scales by adopting a spectral Granger causality framework that allows identification of potentially co-dependent variables. Results based on global and multi-decadal records of remotely sensed leaf area index (LAI) and observed atmospheric data show that the climate control on vegetation variability increases with longer temporal scales, being higher at inter-annual than multi-month scales. Globally, precipitation is the most dominant driver of vegetation at monthly scales, particularly in (semi-)arid regions. The seasonal LAI variability in energy-driven latitudes is mainly controlled by radiation, while air temperature controls vegetation growth and decay in high northern latitudes at inter-annual scales. These observational results are used as a benchmark to evaluate four ESM simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Findings indicate a tendency of ESMs to over-represent the climate control on LAI dynamics and a particular overestimation of the dominance of precipitation in arid and semi-arid regions at inter-annual scales. Analogously, CMIP5 models overestimate the control of air temperature on seasonal vege-tation variability, especially in forested regions. Overall, climate impacts on LAI are found to be stronger than the feedbacks of LAI on climate in both observations and models; in other words, local climate variability leaves a larger imprint on temporal LAI dynamics than vice versa. Note however that while vegetation reacts directly to its local climate conditions, the spatially collocated character of the analysis does not allow for the identification of remote feedbacks, which might result in an underestimation of the biophysical effects of vegetation on climate. Nonetheless, the widespread effect of LAI variability on radiation, as observed over the northern latitudes due to albedo changes, is overestimated by the CMIP5 models. Overall, our experiments emphasise the potential of benchmarking the representation of particular interactions in online ESMs using causal statistics in combination with observational data, as opposed to the more conventional evaluation of the magnitude and dynamics of individual variables

    Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama

    Get PDF
    Plant functional traits determine vegetation responses to environmental variation, but variation in trait values is large, even within a single site. Likewise, uncertainty in how these traits map to Earth system feedbacks is large. We use a vegetation demographic model (VDM), the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), to explore parameter sensitivity of model predictions, and comparison to observations, at a tropical forest site: Barro Colorado Island in Panama. We define a single 12-dimensional distribution of plant trait variation, derived primarily from observations in Panama, and define plant functional types (PFTs) as random draws from this distribution. We compare several model ensembles, where individual ensemble members vary only in the plant traits that define PFTs, and separate ensembles differ from each other based on either model structural assumptions or non-trait, ecosystem-level parameters, which include (a) the number of competing PFTs present in any simulation and (b) parameters that govern disturbance and height-based light competition. While single-PFT simulations are roughly consistent with observations of productivity at Barro Colorado Island, increasing the number of competing PFTs strongly shifts model predictions towards higher productivity and biomass forests. Different ecosystem variables show greater sensitivity than others to the number of competing PFTs, with the predictions that are most dominated by large trees, such as biomass, being the most sensitive. Changing disturbance and height-sorting parameters, i.e., the rules of competitive trait filtering, shifts regimes of dominance or coexistence between early- and late-successional PFTs in the model. Increases to the extent or severity of disturbance, or to the degree of determinism in height-based light competition, all act to shift the community towards early-successional PFTs. In turn, these shifts in competitive outcomes alter predictions of ecosystem states and fluxes, with more early-successional-dominated forests having lower biomass. It is thus crucial to differentiate between plant traits, which are under competitive pressure in VDMs, from those model parameters that are not and to better understand the relationships between these two types of model parameters to quantify sources of uncertainty in VDMs

    A metadata reporting framework (FRAMES) for synthesis of ecohydrological observations

    Get PDF
    Metadata describe the ancillary information needed for data preservation and independent interpretation, comparison across heterogeneous datasets, and quality assessment and quality control (QA/QC). Environmental observations are vastly diverse in type and structure, can be taken across a wide range of spatiotemporal scales in a variety of measurement settings and approaches, and saved in multiple formats. Thus, well-organized, consistent metadata are required to produce usable data products from diverse environmental observations collected across field sites. However, existing metadata reporting protocols do not support the complex data synthesis and model-data integration needs of interdisciplinary earth system research. We developed a metadata reporting framework (FRAMES) to enable management and synthesis of observational data that are essential in advancing a predictive understanding of earth systems. FRAMES utilizes best practices for data and metadata organization enabling consistent data reporting and compatibility with a variety of standardized data protocols. We used an iterative scientist-centered design process to develop FRAMES, resulting in a data reporting format that incorporates existing field practices to maximize data-entry efficiency. Thus, FRAMES has a modular organization that streamlines metadata reporting and can be expanded to incorporate additional data types. With FRAMES\u27s multi-scale measurement position hierarchy, data can be reported at observed spatial resolutions and then easily aggregated and linked across measurement types to support model-data integration. FRAMES is in early use by both data originators (persons generating data) and consumers (persons using data and metadata). In this paper, we describe FRAMES, identify lessons learned, and discuss areas of future development

    Causes and consequences of pronounced variation in the isotope composition of plant xylem water

    Get PDF
    Stable isotopologues of water are widely used to derive relative root water uptake (RWU) profiles and average RWU depth in lignified plants. Uniform isotope composition of plant xylem water (delta(xyl)) along the stem length of woody plants is a central assumption of the isotope tracing approach which has never been properly evaluated.Here we evaluate whether strong variation in delta(xyl) within woody plants exists using empirical field observations from French Guiana, northwestern China, and Germany. In addition, supported by a mechanistic plant hydraulic model, we test hypotheses on how variation in delta(xyl) can develop through the effects of diurnal variation in RWU, sap flux density, diffusion, and various other soil and plant parameters on the delta(xyl) of woody plants.The hydrogen and oxygen isotope composition of plant xylem water shows strong temporal (i.e., sub-daily) and spatial (i.e., along the stem) variation ranging up to 25.2 parts per thousand and 6.8 parts per thousand for delta H-2 and delta O-18, respectively, greatly exceeding the measurement error range in all evaluated datasets. Model explorations predict that significant delta(xyl) variation could arise from diurnal RWU fluctuations and vertical soil water heterogeneity. Moreover, significant differences in delta(xyl) emerge between individuals that differ only in sap flux densities or are monitored at different times or heights.This work shows a complex pattern of delta(xyl) transport in the soil-root-xylem system which can be related to the dynamics of RWU by plants. These dynamics complicate the assessment of RWU when using stable water isotopologues but also open new opportunities to study drought responses to environmental drivers. We propose including the monitoring of sap flow and soil matric potential for more robust estimates of average RWU depth and expansion of attainable insights in plant drought strategies and responses

    Simulating net ecosystem exchange under seasonal snow cover at an Arctic tundra site

    Get PDF
    Estimates of winter (snow-covered non-growing season) CO2 fluxes across the Arctic region vary by a factor of 3.5, with considerable variation between measured and simulated fluxes. Measurements of snow properties, soil temperatures, and net ecosystem exchange (NEE) at Trail Valley Creek, NWT, Canada, allowed for the evaluation of simulated winter NEE in a tundra environment with the Community Land Model (CLM5.0). Default CLM5.0 parameterisations did not adequately simulate winter NEE in this tundra environment, with near-zero NEE (< 0.01 gCm^-2d^-1) simulated between November and mid-May. In contrast, measured NEE was broadly positive (indicating net CO2 release) from snow-cover onset until late April. Changes to the parameterisation of snow thermal conductivity, required to correct for a cold soil temperature bias, reduced the duration for which no NEE was simulated. Parameter sensitivity analysis revealed the critical role of the minimum soil moisture threshold of decomposition (Ψmin) in regulating winter soil respiration. The default value of this parameter (Ψmin) was too high, preventing simulation of soil respiration for the vast majority of the snow-covered season. In addition, the default rate of change of soil respiration with temperature (Q10) was too low, further contributing to poor model performance during winter. As Ψmin and Q10 had opposing effects on the magnitude of simulated winter soil respiration, larger negative values of Ψmin and larger positive values of Q10 are required to simulate wintertime NEE more adequately.Natural Environment Research CouncilPeer Reviewe

    Global patterns and drivers of leaf photosynthetic capacity : the relative importance of environmental factors and evolutionary history

    Get PDF
    Altres ajuts: Fundación Ramon Areces grant CIVP20A6621Aim: understanding the considerable variability and drivers of global leaf photosynthetic capacity [indicated by the maximum carboxylation rate standardized to 25°C (Vc,max25)] is an essential step for accurate modelling of terrestrial plant photosynthesis and carbon uptake under climate change. Although current environmental conditions have often been connected with empirical and theoretical models to explain global Vc,max25 variability through acclimatization and adaptation, long-term evolutionary history has largely been neglected, but might also explicitly play a role in shaping the Vc,max25 variability. - Location: global - Time period: contemporary - Major taxa studied: terrestrial plants. - Methods: we compiled a geographically comprehensive global dataset of Vc,max25 for C3 plants (n = 6917 observations from 2157 species and 425 sites covering all major biomes world-wide), explored the biogeographical and phylogenetic patterns of Vc,max25, and quantified the relative importance of current environmental factors and evolutionary history in driving global Vc,max25 variability. - Results: we found that Vc,max25 differed across different biomes, with higher mean values in relatively drier regions, and across different life-forms, with higher mean values in non-woody relative to woody plants and in legumes relative to non-leguminous plants. The values of Vc,max25 displayed a significant phylogenetic signal and diverged in a contrasting manner across phylogenetic groups, with a significant trend along the evolutionary axis towards a higher Vc,max25 in more modern clades. A Bayesian phylogenetic linear mixed model revealed that evolutionary history (indicated by phylogeny and species) explained nearly 3-fold more of the variation in global Vc,max25 than present-day environment (53 vs. 18%). - Main conclusions: these findings contribute to a comprehensive assessment of the patterns and drivers of global Vc,max25 variability, highlighting the importance of evolutionary history in driving global Vc,max25 variability, hence terrestrial plant photosynthesis
    • …
    corecore