134 research outputs found

    Combining Exploration and Exploitation in Active Learning

    Get PDF
    This thesis investigates the active learning in the presence of model bias. State of the art approaches advocate combining exploration and exploitation in active learning. However, they suffer from premature exploitation or unnecessary exploration in the later stages of learning. We propose to combine exploration and exploitation in active learning by discarding instances outside a sampling window that is centered around the estimated decision boundary and uniformly draw sample from this window. Initially the window spans the entire feature space and is gradually constricted, where the rate of constriction models the exploration-exploitation tradeoff. The desired effect of this approach (CExp) is that we get an increasing sampling density in informative regions as active learning progresses, resulting in a continuous and natural transition from exploration to exploitation, limiting both premature exploitation and unnecessary exploration. We show that our approach outperforms state of the art on real world multiclass datasets. We also extend our approach to spatial mapping problems where the standard active learning assumption of uniform costs is violated. We show that we can take advantage of \emph{spatial continuity} in the data by geographically partitioning the instances in the sampling window and choosing a single partition (region) for sampling, as opposed to taking a random sample from the entire window, resulting in a novel spatial active learning algorithm that combines exploration and exploitation. We demonstrate that our approach (CExp-Spatial) can generate cost-effective sampling trajectories over baseline sampling methods. Finally, we present the real world problem of mapping benthic habitats where bathymetry derived features are typically not strong enough to discriminate the fine details between classes identified from high-resolution imagery, increasing the possiblity of model bias in active learning. We demonstrate, under such conditions, that CExp outperforms state of the art and that CExp-Spatial can generate more cost-effective sampling trajectories for an Autonomous Underwater Vehicle in contrast to baseline sampling strategies

    Robot-assisted surgery for women with endometrial cancer: Surgical and oncologic outcomes within a Belgium gynaecological oncology group cohort.

    Full text link
    peer reviewed[en] OBJECTIVE: To evaluate surgical and oncologic outcomes of patients treated by robot-assisted surgery for endometrial cancer within the Belgium Gynaecological Oncology Group (BGOG). STUDY DESIGN: We performed a retrospective analysis of women with clinically Stage I endometrial cancer who underwent surgical treatment from 2007 to 2018 in five institutions of the BGOG group. RESULTS: A total of 598 consecutive women were identified. The rate of conversion to laparotomy was low (0.8%). The mean postoperative Complication Common Comprehensive Index (CCI) score was 3.4. The rate of perioperative complications did not differ between age groups, however the disease-free survival was significantly lower in patients over 75 years compared to patients under 65 years of age (p=0.008). Per-operative complications, conversion to laparotomy rate, post-operative hospital stay, CCI score and disease-free survival were not impacted by increasing BMI. CONCLUSION: Robot-assisted surgery for the surgical treatment of patients suffering from early-stage endometrial cancer is associated with favourable surgical and oncologic outcomes, particularly for unfavourable groups such as elderly and obese women, thus permitting a low morbidity minimally-invasive surgical approach for the majority of patients in expert centres

    ABCB1 (MDR1) polymorphisms and ovarian cancer progression and survival: A comprehensive analysis from the Ovarian Cancer Association Consortium and The Cancer Genome Atlas

    Get PDF
    <b>Objective</b> <i>ABCB1</i> encodes the multi-drug efflux pump P-glycoprotein (P-gp) and has been implicated in multi-drug resistance. We comprehensively evaluated this gene and flanking regions for an association with clinical outcome in epithelial ovarian cancer (EOC).<p></p> <b>Methods</b> The best candidates from fine-mapping analysis of 21 <i>ABCB1</i> SNPs tagging C1236T (rs1128503), G2677T/A (rs2032582), and C3435T (rs1045642) were analysed in 4616 European invasive EOC patients from thirteen Ovarian Cancer Association Consortium (OCAC) studies and The Cancer Genome Atlas (TCGA). Additionally we analysed 1,562 imputed SNPs around ABCB1 in patients receiving cytoreductive surgery and either ‘standard’ first-line paclitaxel–carboplatin chemotherapy (n = 1158) or any first-line chemotherapy regimen (n = 2867). We also evaluated ABCB1 expression in primary tumours from 143 EOC patients.<p></p> <b>Result</b> Fine-mapping revealed that rs1128503, rs2032582, and rs1045642 were the best candidates in optimally debulked patients. However, we observed no significant association between any SNP and either progression-free survival or overall survival in analysis of data from 14 studies. There was a marginal association between rs1128503 and overall survival in patients with nil residual disease (HR 0.88, 95% CI 0.77–1.01; p = 0.07). In contrast, <i>ABCB1</i> expression in the primary tumour may confer worse prognosis in patients with sub-optimally debulked tumours.<p></p> <b>Conclusion</b> Our study represents the largest analysis of <i>ABCB1</i> SNPs and EOC progression and survival to date, but has not identified additional signals, or validated reported associations with progression-free survival for rs1128503, rs2032582, and rs1045642. However, we cannot rule out the possibility of a subtle effect of rs1128503, or other SNPs linked to it, on overall survival.<p></p&gt

    HE4 and CA125 as a diagnostic test in ovarian cancer: prospective validation of the Risk of Ovarian Malignancy Algorithm

    Get PDF
    BACKGROUND: Recently, a Risk of Ovarian Malignancy Algorithm (ROMA) utilising human epididymis secretory protein 4 (HE4) and CA125 successfully classified patients as presenting a high or low risk for epithelial ovarian cancer (EOC). We validated this algorithm in an independent prospective study. METHODS: Women with a pelvic mass, who were scheduled to have surgery, were enrolled in a prospective study. Preoperative serum levels of HE4 and CA125 were measured in 389 patients. The performance of each of the markers, as well as that of ROMA, was analysed. RESULTS: When all malignant tumours were included, ROMA (receiver operator characteristic (ROC)-area under curve (AUC) = 0.898) and HE4 (ROC-AUC) = 0.857) did not perform significantly better than CA125 alone (ROC-AUC = 0.877). Using a cutoff for ROMA of 12.5% for pre-menopausal patients, the test had a sensitivity of 67.5% and a specificity of 87.9%. With a cutoff of 14.4% for post-menopausal patients, the test had a sensitivity of 90.8% and a specificity of 66.3%. For EOC vs benign disease, the ROC-AUC of ROMA increased to 0.913 and for invasive EOC vs benign disease to 0.957. CONCLUSION: This independent validation study demonstrated similar performance indices to those recently published. However, in this study, HE4 and ROMA did not increase the detection of malignant disease compared with CA125 alone. Although the initial reports were promising, measurement of HE4 serum levels does not contribute to the diagnosis of ovarian cancer. British Journal of Cancer (2011) 104, 863-870. doi:10.1038/sj.bjc.6606092 www.bjcancer.com Published online 8 February 2011 (C) 2011 Cancer Research U

    ABCA transporter gene expression and poor outcome in epithelial ovarian cancer

    Full text link
    Background ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown. Methods The relationship between clinical outcomes and ABC transporter gene expression in two independent cohorts of high-grade serous EOC tumors was assessed with real-time quantitative polymerase chain reaction, analysis of expression microarray data, and immunohistochemistry. Associations between clinical outcomes and ABCA transporter gene single nucleotide polymorphisms were tested in a genome-wide association study. Impact of short interfering RNA-mediated gene suppression was determined by colony forming and migration assays. Association with survival was assessed with Kaplan-Meier analysis and log-rank tests. All statistical tests were two-sided. Results Associations with outcome were observed with ABC transporters of the A subfamily, but not with multidrug transporters. High-level expression of ABCA1, ABCA6, ABCA8, and ABCA9 in primary tumors was statistically significantly associated with reduced survival in serous ovarian cancer patients. Low levels of ABCA5 and the C-allele of rs536009 were associated with shorter overall survival (hazard ratio for death = 1.50; 95% confidence interval [CI] =1.26 to 1.79; P = 6.5e-6). The combined expression pattern of ABCA1, ABCA5, and either ABCA8 or ABCA9 was associated with particularly poor outcome (mean overall survival in group with adverse ABCA1, ABCA5 and ABCA9 gene expression = 33.2 months, 95% CI = 26.4 to 40.1; vs 55.3 months in the group with favorable ABCA gene expression, 95% CI = 49.8 to 60.8; P =. 001), independently of tumor stage or surgical debulking status. Suppression of cholesterol transporter ABCA1 inhibited ovarian cancer cell growth and migration in vitro, and statin treatment reduced ovarian cancer cell migration. Conclusions Expression of ABCA transporters was associated with poor outcome in serous ovarian cancer, implicating lipid trafficking as a potentially important process in EOC. © 2014 The Author 2014. Published by Oxford University Press. All rights reserved

    Identification of Tumor Suppressors and Oncogenes from Genomic and Epigenetic Features in Ovarian Cancer

    Get PDF
    The identification of genetic and epigenetic alterations from primary tumor cells has become a common method to identify genes critical to the development and progression of cancer. We seek to identify those genetic and epigenetic aberrations that have the most impact on gene function within the tumor. First, we perform a bioinformatic analysis of copy number variation (CNV) and DNA methylation covering the genetic landscape of ovarian cancer tumor cells. We separately examined CNV and DNA methylation for 42 primary serous ovarian cancer samples using MOMA-ROMA assays and 379 tumor samples analyzed by The Cancer Genome Atlas. We have identified 346 genes with significant deletions or amplifications among the tumor samples. Utilizing associated gene expression data we predict 156 genes with altered copy number and correlated changes in expression. Among these genes CCNE1, POP4, UQCRB, PHF20L1 and C19orf2 were identified within both data sets. We were specifically interested in copy number variation as our base genomic property in the prediction of tumor suppressors and oncogenes in the altered ovarian tumor. We therefore identify changes in DNA methylation and expression for all amplified and deleted genes. We statistically define tumor suppressor and oncogenic features for these modalities and perform a correlation analysis with expression. We predicted 611 potential oncogenes and tumor suppressors candidates by integrating these data types. Genes with a strong correlation for methylation dependent expression changes exhibited at varying copy number aberrations include CDCA8, ATAD2, CDKN2A, RAB25, AURKA, BOP1 and EIF2C3. We provide copy number variation and DNA methylation analysis for over 11,500 individual genes covering the genetic landscape of ovarian cancer tumors. We show the extent of genomic and epigenetic alterations for known tumor suppressors and oncogenes and also use these defined features to identify potential ovarian cancer gene candidates

    Germline polymorphisms in an enhancer of PSIP1 are associated with progression-free survival in epithelial ovarian cancer.

    Get PDF
    Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7x10-5, HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1, CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression.This project has been supported by a grant from Cancer Australia. The Mayo Clinic GWAS was supported by R01CA114343 (Haplotype-based genome screen for ovarian cancer loci). The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith. The AOCS was supported by the U.S. Army Medical Research and Materiel Command under DAMD17-01-1-0729, the National Health and Medical Research Council (NHMRC) of Australia (grants 400281, 400413), Cancer Council Victoria, Cancer Council Queensland, Cancer Council New South Wales, Cancer Council South Australia, The Cancer Foundation of Western Australia, and Cancer Council Tasmania. G. Chenevix-Trench is a Senior Principal Research fellow of the NHMRC. Y. Lu is funded by NHMRC grant 496675, S. MacGregor is supported by an NHMRC career development award, S. Edwards and J. French are supported by Fellowships from the National Breast Cancer Foundation (NBCF) Australia. The QIMR Berghofer groups were supported by NHMRC project grants (1051698 to SM and 1058415 to SLE and JDF) and a Weekend to End Women’s Cancer Research Grant (to SLE). A deFazio is funded by the University of Sydney Cancer Research Fund and A deFazio and PR Harnett are funded by the Cancer Institute NSW through the Sydney-West Translational Cancer Research Centre. B. Gao is supported by NHMRC and Cancer Institute NSW scholarship. KBM and MO’R are funded by CR-UK. The Bavarian study (BAV) was supported by ELAN Funds of the University of Erlangen-Nuremberg. HSK would like to thank Ira Schwaab for her tireless work on sample preparation. The Belgian study (BEL) was funded by Nationaal Kankerplan and we would like to thank Gilian Peuteman, Thomas Van Brussel and Dominiek Smeets for technical assistance. The Japanese study (JPN) was funded by a Grant-in-Aid for the Third Term Comprehensive 10-Year Strategy for Cancer Control from the Ministry of Health, Labour and Welfare. The International Collaborative Ovarian Neoplasm study (ICON)7 trial team would like to thank the Medical Research Council (MRC) Clinical Trial Unit (CTU) at the University of London (UCL), the ICON7 Translational Research Sub-group, and the University of Leeds for their work on the coordination of samples and data from the ICON7 trial. The LAX study (Women’s Cancer Program) was supported by the American Cancer Society Early Detection Professorship (120950-SIOP-06-258-06-COUN) and Entertainment Industry Foundation. Funding for MALOVA (MAL) was provided by research grant RO1 CA 61107 from the National Cancer Institute, Bethesda, MD; research grant 94 222 52 from the Danish Cancer Society, Copenhagen, Denmark; and the Mermaid I project. The Mayo Clinic study (MAYO) was supported by R01 CA122443, P50 CA136393. The Oregon study (ORE) was funded by the Sherie Hildreth Ovarian Cancer Research Fund and the OHSU Foundation. We would like to thank all members of Scottish Gynaecological Clinical Trials group and the SCOTROC1 investigators. SCOTROC1 (SRO) was funded by Cancer Research UK, and the SCOTROC biological studies were supported by Cancer Research UK (grant C536/A6689). RSH receives support from NIH/NIGMS grant K08GM089941, NIH/NCI grant R21 CA139278, NIH/NIGMS grant UO1GM61393, University of Chicago Cancer Center Support Grant (#P30 CA14599) and Breast Cancer SPORE Career Development Award.This is the final version of the article. It first appeared from Impact Journals via http://dx.doi.org/10.18632/oncotarget.704

    Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer

    Get PDF
    BACKGROUND: Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer. METHODS: In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients. RESULTS: The most significant global associations for all genes in the pathway were seen in endometrioid (p = 0.082) and clear cell (p = 0.083), with the most significant gene level association seen with TGFBR2 (p = 0.001) and clear cell EOC. Gene associations with histotypes at p < 0.05 included: IL12 (p = 0.005 and p = 0.008, serous and high-grade serous, respectively), IL8RA (p = 0.035, endometrioid and mucinous), LGALS1 (p = 0.03, mucinous), STAT5B (p = 0.022, clear cell), TGFBR1 (p = 0.021 endometrioid) and TGFBR2 (p = 0.017 and p = 0.025, endometrioid and mucinous, respectively). CONCLUSIONS: Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients

    Variants in genes encoding small GTPases and association with epithelial ovarian cancer susceptibility

    Get PDF
    Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer mortality in American women. Normal ovarian physiology is intricately connected to small GTP binding proteins of the Ras superfamily (Ras, Rho, Rab, Arf, and Ran) which govern processes such as signal transduction, cell proliferation, cell motility, and vesicle transport. We hypothesized that common germline variation in genes encoding small GTPases is associated with EOC risk. We investigated 322 variants in 88 small GTPase genes in germline DNA of 18,736 EOC patients and 26,138 controls of European ancestry using a custom genotype array and logistic regression fitting log-additive models. Functional annotation was used to identify biofeatures and expression quantitative trait loci that intersect with risk variants. One variant, ARHGEF10L (Rho guanine nucleotide exchange factor 10 like) rs2256787, was associated with increased endometrioid EOC risk (OR=1.33, p=4.46 x 10-6). Other variants of interest included another in ARHGEF10L, rs10788679, which was associated with invasive serous EOC risk (OR=1.07, p=0.00026) and two variants in AKAP6 (A-kinase anchoring protein 6) which were associated with risk of invasive EOC (rs1955513, OR=0.90, p=0.00033; rs927062, OR =0.94, p=0.00059). Functional annotation revealed that the two ARHGEF10L variants were located in super-enhancer regions and that AKAP6 rs927062 was associated with expression of GTPase gene ARHGAP5 (Rho GTPase activating protein 5). Inherited variants in ARHGEF10L and AKAP6, with potential transcriptional regulatory function and association with EOC risk, warrant investigation in independent EOC study populations
    • …
    corecore