305 research outputs found

    Observation of implicit complexity by non confluence

    Get PDF
    We propose to consider non confluence with respect to implicit complexity. We come back to some well known classes of first-order functional program, for which we have a characterization of their intentional properties, namely the class of cons-free programs, the class of programs with an interpretation, and the class of programs with a quasi-interpretation together with a termination proof by the product path ordering. They all correspond to PTIME. We prove that adding non confluence to the rules leads to respectively PTIME, NPTIME and PSPACE. Our thesis is that the separation of the classes is actually a witness of the intentional properties of the initial classes of programs

    Superposition as a logical glue

    Full text link
    The typical mathematical language systematically exploits notational and logical abuses whose resolution requires not just the knowledge of domain specific notation and conventions, but not trivial skills in the given mathematical discipline. A large part of this background knowledge is expressed in form of equalities and isomorphisms, allowing mathematicians to freely move between different incarnations of the same entity without even mentioning the transformation. Providing ITP-systems with similar capabilities seems to be a major way to improve their intelligence, and to ease the communication between the user and the machine. The present paper discusses our experience of integration of a superposition calculus within the Matita interactive prover, providing in particular a very flexible, "smart" application tactic, and a simple, innovative approach to automation.Comment: In Proceedings TYPES 2009, arXiv:1103.311

    Algebraic totality, towards completeness

    Get PDF
    Finiteness spaces constitute a categorical model of Linear Logic (LL) whose objects can be seen as linearly topologised spaces, (a class of topological vector spaces introduced by Lefschetz in 1942) and morphisms as continuous linear maps. First, we recall definitions of finiteness spaces and describe their basic properties deduced from the general theory of linearly topologised spaces. Then we give an interpretation of LL based on linear algebra. Second, thanks to separation properties, we can introduce an algebraic notion of totality candidate in the framework of linearly topologised spaces: a totality candidate is a closed affine subspace which does not contain 0. We show that finiteness spaces with totality candidates constitute a model of classical LL. Finally, we give a barycentric simply typed lambda-calculus, with booleans B{\mathcal{B}} and a conditional operator, which can be interpreted in this model. We prove completeness at type BnB{\mathcal{B}}^n\to{\mathcal{B}} for every n by an algebraic method

    ASMs and Operational Algorithmic Completeness of Lambda Calculus

    Get PDF
    We show that lambda calculus is a computation model which can step by step simulate any sequential deterministic algorithm for any computable function over integers or words or any datatype. More formally, given an algorithm above a family of computable functions (taken as primitive tools, i.e., kind of oracle functions for the algorithm), for every constant K big enough, each computation step of the algorithm can be simulated by exactly K successive reductions in a natural extension of lambda calculus with constants for functions in the above considered family. The proof is based on a fixed point technique in lambda calculus and on Gurevich sequential Thesis which allows to identify sequential deterministic algorithms with Abstract State Machines. This extends to algorithms for partial computable functions in such a way that finite computations ending with exceptions are associated to finite reductions leading to terms with a particular very simple feature.Comment: 37 page

    Homeomorphic Embedding for Online Termination of Symbolic Methods

    No full text
    Well-quasi orders in general, and homeomorphic embedding in particular, have gained popularity to ensure the termination of techniques for program analysis, specialisation, transformation, and verification. In this paper we survey and discuss this use of homeomorphic embedding and clarify the advantages of such an approach over one using well-founded orders. We also discuss various extensions of the homeomorphic embedding relation. We conclude with a study of homeomorphic embedding in the context of metaprogramming, presenting some new (positive and negative) results and open problems

    A Computation of the Maximal Order Type of the Term Ordering on Finite Multisets

    Get PDF
    We give a sharpening of a recent result of Aschenbrenner and Pong about the maximal order type of the term ordering on the finite multisets over a wpo. Moreover we discuss an approach to compute maximal order types of well-partial orders which are related to tree embeddings

    Complexity Bounds for Ordinal-Based Termination

    Full text link
    `What more than its truth do we know if we have a proof of a theorem in a given formal system?' We examine Kreisel's question in the particular context of program termination proofs, with an eye to deriving complexity bounds on program running times. Our main tool for this are length function theorems, which provide complexity bounds on the use of well quasi orders. We illustrate how to prove such theorems in the simple yet until now untreated case of ordinals. We show how to apply this new theorem to derive complexity bounds on programs when they are proven to terminate thanks to a ranking function into some ordinal.Comment: Invited talk at the 8th International Workshop on Reachability Problems (RP 2014, 22-24 September 2014, Oxford

    Soundness of Unravelings for Conditional Term Rewriting Systems via Ultra-Properties Related to Linearity

    Full text link
    Unravelings are transformations from a conditional term rewriting system (CTRS, for short) over an original signature into an unconditional term rewriting systems (TRS, for short) over an extended signature. They are not sound w.r.t. reduction for every CTRS, while they are complete w.r.t. reduction. Here, soundness w.r.t. reduction means that every reduction sequence of the corresponding unraveled TRS, of which the initial and end terms are over the original signature, can be simulated by the reduction of the original CTRS. In this paper, we show that an optimized variant of Ohlebusch's unraveling for a deterministic CTRS is sound w.r.t. reduction if the corresponding unraveled TRS is left-linear or both right-linear and non-erasing. We also show that soundness of the variant implies that of Ohlebusch's unraveling. Finally, we show that soundness of Ohlebusch's unraveling is the weakest in soundness of the other unravelings and a transformation, proposed by Serbanuta and Rosu, for (normal) deterministic CTRSs, i.e., soundness of them respectively implies that of Ohlebusch's unraveling.Comment: 49 pages, 1 table, publication in Special Issue: Selected papers of the "22nd International Conference on Rewriting Techniques and Applications (RTA'11)
    corecore