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Algebraic totality, towards completeness.

Christine Tasson

Preuves, Programmes, Systemes

Abstract. Finiteness spacesonstitute a categorical model of Linear Logic
whose objects can be seen as linearly topologised spacdaséaof topological
vector spaces introduced by Lefschetz in 1942) and morghé&necontinuous lin-
ear maps. First, we recall definitions of finiteness spacdsiaacribe their basic
properties deduced from the general theory of linearly lmgised spaces. Then
we give the interpretation of LL with an algebraic approagkcond, thanks to
separation properties, we can introduce an algebraicmofitotality candidate
in the framework of linearly topologised spaces: a totatiéydidate is a closed
affine subspace which does not cont@inVe show that finiteness spaces with
totality candidates constitute a model of classical LL aflip we give a barycen-
tric simply typed lambda-calculus, with boolealisand a conditional operator,
which can be interpreted in this model. We prove completeaesype5” — B
for everyn by an algebraic method.

Introduction

In the 80’s, Girard has been led to introduce linear logic)(atter a denotational inves-
tigation of system F. The basic idea of LL is to decomposerthétionistic implication
into a linear one and an exponential modality. Many intmisidoehind LL are rooted in
linear algebra and relate algebraic concepts with operaltimnes. For instance, a linear
function in the LL sense is a program (or a proof) which useaigument exactly once
and LL shows that this idea is similar to linearity in the dggc sense. Can we use
vector spaces and linear maps for interpreting LL? In theegptial-free fragment of
LL, this is quite easy, since all vector spaces can stay fiiiteensional: it is sufficient
to take the standard relational interpretation of a fornfulaich is a set) and to build
the vector space generated by this set. However, the expaherdality introduces
infinite dimension and some topology is heeded for contrglthe size of dual spaces.
Indeed, we want all spaces to be reflexive, that is, isomorfzhiheir second dual,
because duality corresponds to linear negation which witive.

There are various ways for defining interpretations witbdinspaces. Among them,
the interpretations based on linearly topologised spazék tiave the feature of not
requiring any topology on the fielel. This is quite natural, since the topology of the field
is never used for interpreting proofs. Introduced first bfschetz in [L4], these spaces
are geometrically quite unintuitive (their basic openslarear subsets whereas usual
basic opens are balls). They provide nevertheless the esthgettting where formulae of
LL can be seen as (topological) linear spaces as shown byakhwhen he introduced
finiteness spaces$]

There are two ways of considering finiteness spaces:

Relational finiteness spaceley can be seen as a refinement of the relational semantics
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of linear logic, in which the semantics of proofs is the samtha standard one (proofs
are interpreted as relations).

Linear finiteness spacegiven a field, any relational finiteness space gives risdito a
early topologised vector space. The category of lineasii@ss spaces and continuous
linear functions constitutes a model of linear logic. Besida linear finiteness space
and its dual with the evaluation as pairing is a Chu spatérhe proofs of linear logic
are interpreted as multilinear hypocontinuous maps (hgpticuity is between sepa-
rate continuity and continuity). Our description of pro¢ésf. AnnexB) is closed to
that of Game Categories of Lafont and StreicHed] [

For describing these categories, we use the duality prasemiwvhose importance
has been emphasised by models of Classical Linear Logic asighhase semantics.
Even the definition of coherence spac8k [isually described by means of a binary
symmetric and reflexiveoherence relatiorEx on a set|X|, can be reformulated
through duality []. We will freely use the terminology oflfl] — a survey of the
different duality presentations and in particular of madet linear logic by double
orthogonal. Thepartial orthogonalitybetween the subsetsaandc’ of | X| is given by

¢ Lleon @ = t(end) <1

A coherence space can then be seen as a¥air (|X|,C(X)) where|X]| is a set
andC(X) is a subset of?(|X|) (the powerset of X|), which is L..,-closed, that is
equal to its second dual for the duality induced by the ortimadjty:C(X) = C(X ).
The elements of (X) are thecliquesof X, those ofC(X)* are the anticliques. The
category of coherence spaces and cliques rdrogonality category

The category of relational finiteness spaces and finitagticgls (a refinement of
standard relations) also constitute an orthogonalitygmagewith respect to théinite
orthogonalitydefined as follows: let. andu’ be two sets,

u Lgy v’ <= funu’) < oo.

A relational finiteness space is a pair = (|X|,F(X)) where|X| is a countable
set and the seF(X) of finitary parts is Lg,-closed. The elements ¢f(X )~ are the
antifinitary parts. We carry the relational finiteness in the linear wbstcconsidering
the linear subspace &~! generated by finitary linear combinations, that is families
r = (za)ae| x| SUch that their suppott| is finitary. The finite orthogonality between
supports | Ls, |x|") implies that the pairing between a finitary linear combiorat:
and antifinitary one’ is well-defined:

(', 2) = DacX| ToTa = 2 ueanlelr Ta Ta iS @ finite sum.

The notion of totality, introduced by Girar@][in denotational semantics, is used for
interpreting proofs more closely. It often gives the meansrbve completeness results
as in Loader]5]. Girard-Loader's totality is described by an orthogotyadiategory up
to a slight modification of the partial orthogonality:

U Lo v/ = Hunu’) =1.
A totality candidate is then a subsg{X') of P(X) such that®(X) is L.¢-closed. A
totality spacéis a pair(|X |, ©(X)) whered(X) is a totality candidate.

! The additional conditions that are actually requiredlif fare not essential for our purpose.
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The notion of totality can be adapted to linear spaces. Santseduce the polar
orthogonality:
r 1% = (' 2)=1

Because we are working in a linear algebra setting, we aeetalijive a simple char-
acterisation of totality candidates, that is polar-closeddspaces of linear finiteness
spaces: a totality candidate of a finiteness space is etibespace itself, or the empty
set, or any topologically closed affine subspace that doesardain0 and which is
topologically closed. We get an orthogonality category séhobjects are pairs of a
finiteness space and a totality candidate; and whose mag®atiauous linear func-
tions that preserve the totality candidates. This is a moflelL.

Since totality candidate are affine spaces, it is naturatitbem affine construction
to LL: we thus introducéarycentric LL We address then the question of completeness:
is it the case that any vector in the totality candidate ofrenfda is the interpretation of
a proof of this formula? Restricting our attention to a bamtcic version of the simply
typed lambda-calculus (extended with booleBrand a conditional operator), we prove
completeness at typ8” = B for all n, by an algebraic method.

Outline. We start Sectiorl with generalities on finiteness spaces at both levels.
Then, we give several properties inherited from linearjyologised spaces, in partic-
ular, we introduce separation results that are fundaméntile sequel. We describe
the interpretation of linear logic proofs into finitenesasps relying on Ehrhard’s re-
sults [6,5]. In Section2, after having defined totality candidates and the assattatal
orthogonality category, we study barycentxicalculus. Finally, in Sectio8, we tackle
the completeness problem and give a positive answer foofidgr boolean types.

1 Finiteness spaces

1.1 Relational finiteness spaces
Let A be a countable set. The finite orthogonality is defined by:
Vu, v’ €A, u L v <= un finite.

As usual, the orthogonal of arf C P(A) is F* = {v/ CA|Vu € F, u L u'}
and.F is orthogonally closed whenevéi-+ = F.

Definition 1. A relational finiteness spaces a pair A = (JA|, F(A)) where theweb

| Al is a countable set and tHmitary subsetsF(A) C P(|AJ) are orthogonally closed.
We callu € F(A1) antifinitary. Let A and B be relational finiteness spaces. A finitary
relation R betweend and B is a subset ol x B such that

Vu € F(A), R-u={be€|B||Ja € u, (a,b) € R} € F(B),
Vo' € F(B)Y, 'R-v' = {a € |A||Fb e, (a,b) € R} € F(A)*L.

Let us callRelFin the category whose objects are the relational finitenessepand
whose maps are the finitary relations.
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Every finite subset of a countable sktis finitary. Therefore, there is only one
relational finiteness space associated with a finite web gahget is finitary).

LetF, G C P(A). If F C G thengt C F+. Besides,F C F1+, henceFt++ =
F+L. Therefore(A, F11) is always a finiteness space.

Let A be a relational finiteness space, thefi(A4)+)+ = F(A). Thus, theor-
thogonal A+ of A defined to bg|A|, F(A)1) is a relational finiteness space whose
orthogonalA++ = (|A], F(A)*++) is equal toA.

Example 2. Boolean3he relational finiteness spaBdas associated with the web with
two element® = {T,F}. Every subset is finitaryr (8) = P(B).

Integers.The webN of integers, associated with the finite subgets(N) constitutes a
relational finiteness space denoted Its orthogonalV'* is (N, P(N)).

1.2 Linear finiteness spaces

Notations: In the sequeH, (A;);<, andB range over relational finiteness spaces. The
field k is discrete and infinite (i.e. every subsekd§ open). We handle standard notions
of linear algebra using the notations:E* is the space of linear forms ovél, E’ is
the topological dual of, (z*,z) isz*(x) if x € E andz* € E*, kerg(z*) is
the kernel ofz* € E*, annpg-(z) (resp.ann g/ (x)) is the subspace af* (resp.
E') of linear forms (resp. continuous linear forms) which dnilatez, aff (D) (resp.
aff (D)) is the affine hull (resp. affine closed) of a subBet

Any relational finiteness spackgives rise to a linear finiteness spaégsl) which
is a subspace of the linear spaddé!:

Definition 3. For everyr € k4, let|z| = {a € |A| |z, # 0} be thesupportof z. The
linear finiteness spacassociated with is k(A) = {z € kIl ||z| € F(A)}.

With eacha € |A|, we associate a basic vectqr € k(A). Notice thatk(A) is
generated by thénitary linear combinations of basic vectors (and not by finite ones)

Each linear finiteness space can be endowed with a topologhvginduced by
the antifinitary parts of the underlying relational finiteeespace:

Definition 4. For everyJ’' € F(A)*, letuscallVy = {z € k(A) ||z|NJ =0} a
fundamental linear neighbourhoof 0. A subset/ of k(A) is open if and only if for
eachz € U there isJ, € F(A)* such thatz + V;;, C U. This topology is named the
finiteness topologpn k(A).

The collection ofV;, where.J’ ranges 0ver7-"(A)L is a filter basis. Indeed, for

everyJj, Js € F(A)*, VNV, = Vg andJ{ U J; € (F(A))*. Besidesk(A) is
Hausdorff, since for every # 0 anda € || the finite sef{a} € F(A)*, sox ¢ V{,}.

Endowed with the finiteness topolody A) is alinearly topologised space That
is a topological vector space over a discrete field whoselogyas generated by a
fundamental system (a filter basis of neighbourhood8,diere theV;., which are
linear subspaces d(A)). Introduced by LefschetZl}, 11 - §6], linearly topologised
spaces have been widely studied12,[§10-13].

Definition 5. Let us callLinFin the category whose objects are the linear finiteness
spaces and whose maps are the linear continuous functions.
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Example 6. Booleang\s every linear finiteness space whose web is finite, thedinea
finiteness space associated with the boolean relationakspas a finite dimension:
k(B) = k(B+) = kB ~ k2. The spacé(B) is endowed with the discrete topology
sinceB is antifinitary and sd’z = {0} is a fundamental linear neighbourhoodlof
Integers.The linear finiteness space associated wiftis the set of finite sequences
overk. The linear finiteness space associated With is the set of all sequences over
k. SinceN € F(N1), Vi = {0} is a neighbourhood of zeré(/\) is endowed with
the discrete topology. On the contrary, the topologykdV/ ) is non-trivial: the fun-
damental system is the collectiondj, whereJ’ ranges over finite subsets &f The
spacek(N) is simply k" endowed with the usual product topology.

Linearly topologised spaces are quite different from Barggaces. Any open sub-
setV of a finiteness space is closet(¢ V., (x + V) NV = () — linear finite-
ness spaces are totally disconnected. Intuitively, unis laae replaced by subspaces,
the Vs, which can hardly be considered as bounded in the usualingedtowever,
there are linear variants of the classical notions of bodndes and compactness:

Definition 7. A subspac€’ of k(A) is saidlinearly boundediff for every.J’ € F(A)*+
the codimension df ;» N C in C'is finite, i.e. there exists a subspacg of C' such that:

C = (Vyy nC) @ Cyanddim Cy is finite.

A subspacdf( of k(A) is saidlinearly compactiff for every filter F of affine closed
subspaces dt(A), which satisfies the intersection property (W& € F, F N K # (),

(NF)NK # 0.

Theorem 8 (Tychonov).[12, §10.9(7)] For any sef, k! endowed with the product
topology (generated by; = {z € k! | |z| N J = 0} with J C I) is linearly compact.

In the converse direction, we get a characterisation oéliyecompact spaces:

Theorem 9. [14, 1l - 86(32.1)] For every linearly compact vector spagg there is a
setl such thatK is topologically isomorphic té! endowed with the product topology.

Example 10. Booleanss in every linearly topologised space of finite dimensicee(s
[12, 813.1]), every subspace BfB) is linearly bounded.

Integers.t follows from Th.9 that a linearly compact space is discrete iff its dimension
is finite. Hence, the linearly compact subspacds(@{) are the finite dimensional ones.
Thanks to Tychonov T8, k(A1) is linearly compact.

In the finiteness setting, finitary support characterisedity bounded spaces. Al-
though it is not true in the general setting of linearly taygpsed spaced P, §13.1(5)],
linearly compact spaces are exactly the closed linearlyted spaces.

Proposition 11. Let K be a subspace &(A). There is an equivalence between

1. K is linearly bounded, 2|K| = U{|z||x € K} isfinitary,
3. the closure of{ is linearly compact.
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Proof. First, letC be a linearly bounded space adi € F(A)+. There is a finite
dimensional subspaa®, of C such thalC' = (C' N V) & Cy. Since the dimension of
Cy is finite, |Cy| is finitary. Besides|C| N J' = |Cy| N J" which is finite:|C| € F(A).
Conversely, ifC| € F(A), then|C| N .J' is finite andC C (kX1 N V) @ kKIKIN is
linearly bounded. The equivalence betwe2nahd () has already been proved if][
(Complete proof in AnneX, Prop.11)

We focus attention on the topological dual — a linearly tapgided space endowed
with the compact open topology, that is the topology of umf@onvergence on either
linearly bounded spaces or linearly compact spaces (deuaivhanks to Propl1).

Definition 12. Thetopological dualk(A)’ is the linear space made of continuous lin-
ear forms oveik(A4) and endowed with the linearly compact open topology. Tluslto
ogy is generated by thenn i 4y (K) = {2’ € k(A)" |Vx € K, (2/,x) = 0}s where
K ranges over linearly compact subspace&afl).

The two following propositions are central in the totalityroduced in Sectiof.

Proposition 13 (Separation)[12, §10.4(1")]. For every closed subspaéeof k(A)
andx ¢ D, there is a continuous linear form’ € k(A)’ such that(z,2’) = 1 and
Vd € D, (d,2') = 0. (Proof in AnnexA, Prop. 13)

Proposition 14 (Separation in the dual). LetT” be a closed affine subspacddfd)’
such thal ¢ T". There exists: € k(A) suchthatvz’ € 77, (a/,x) = 1.

Proof. First, we linear algebra ensures the result when the diraemgil” is finite (c.f.
AnnexA, Lem14). Second, the closed subspaledoes not contaif, so there isk’
linearly compact ofk(A) such thatann (K) N7 = (. We use the closed affine filter
made ofl'r = {x € E|Va' € F', («/,2) = 1} with F’ ranging over finite collections
of k(A)" and the compactness &f to build the wanted:. (Details in Annexa, Prop. 14)

Both separations theorem, ensure the algebraic isomongiesveen a linear finite-
ness space and its second dual. This isomorphism is botlhoont and open, as lin-
early bounded subspaces of the dual coincide with equitootis subspaces (Prdh).
To sum up, the reflexivity of finiteness spaces relies on tileslbetween linearly com-
pactness, closed linearly bounded and equicontinuity. (AnnexA, Prop 16-17)

Proposition 15. (Equicontinuous spaces) Let be a relational finiteness space. A
subspaceB’ of k(A)’ is linearly bounded if and only if there i € F(A)* such that
B" C ann iy (V). (proof in AnnexA, Prop. 15)

Linear finiteness spaces satisfy other good propertieg @benit Schauder bases
(€a)ac|a| @and are completed]). Although we do not know by now if the category of
linearly topologised spaces satisfying all these propeiis stable under LL construc-
tions, we already know that the full subcategory of finitengsaces is a model of LL.
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Algebraic totality, towards completeness.

Both categorieRelFin and LinFin constitute a model of classical linear logic as
it has been proved by Ehrhar6][ Although linear finiteness spaces are entirely de-
termined by their underlying relational finiteness spadg.{fy, we give the algebraic

description of the constructions of LL hinFin (Fig.2) as in B,5].

Multiplicatives:
|AT B| = |A® B| = |A| x |B|

R C |A| x |B| s.t.

R-|B| € F(A)

F(A®B) =
{ 'R-|A| € F(B)

F(AT B) = {Vu € F(A)*Y, R-uec F(B)
Yv e F(B):, 'R-v e F(A)

R C|A| x |B|s.t. }

}

Additives:
|&i Ai] = |@: Ai| = |, Ail,

L;u; S.1. }

Fleidi) = {W el,u; € F(A)

Ujesu; S.t.
F(®iAs) = J C I finite

vy € J, u; € F(A;)

}

Exponentials:
"A| = |7A] = Man(|A]) = {1 : A — N|pu(a) > 0 for finitely manya € A}
F(A) ={M € Msn(|A]) | A{lpl, p € M} € F(A)}
F(74) = {M C Man(JA]) [V € F(A)Y, Man(u) N M finite}

Example 16.If B =1 ® 1, then we get back to E2: [B] = k & k ~ k.
17B*| = |!B| = Mgin(T,F) ~ N?,
F(1B) = {M C Meu(T,F) | Upenr lul € F(B)} = P(N?),
F(2BY)={M CN?|VM' C N?, M N M’ fin.} = Pgs(N?).

Fig. 1: LL interpreted inRelF'in; proofs are interpreted as in the relational model.

Multiplicatives:
k(1) =k(1) =k
K

k(A ® B) = k(A) @ k(B)
k(A — B) = Lc(k(A), k(

AT B) = k(A) ®. k(B)

Additives:

K(T) = k(0) = {0}
]k<&ielz4i> = Xie]]k<A>rL'
k(PicrAi) = Bicrk(A);

Exponentials:

k(?A1) = Pol(k(A))

Kk(14) = [ISBI(MA»]/

Fig. 2: Interpretation of formulee ifLinFin, for proofs, see AnneB.
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Let us give some explanations on Fg.

(—o) continuous linear function¥Ve can generalise the topological dual framework
and endow the space of continuous linear functipék(A), k(B)) with the linearly
compact open topology. It is generated WY(K, V) = {f | f(K) C V} whereK
ranges over linearly compact subspace&ol) andV over fundamental neighbour-
hoods of0 of k(B).

The linearly topologised spacg.(k(A), k(B)) coincides with the linear finiteness
spacek(A — B) = k(A+ T B). Indeed, the canonical map which maps each lin-
ear function to its matrix in the base induced by the web ia@di homeomorphism.

(T") hypocontinuous bilinear form#s noticed by Ehrhard, the evaluation map:
ev: k(A — B) x k(A) — k(B) is separately continuous but not continuous. That is
why we need another the notion of hypocontinuity:

A bilinear form¢ : k(A) x k(B) — k is saidhypocontinuousiff for every linearly
compactds 4 of k(A) andK p of k(B), there are two neighbourhootg of k(B) and
V4 of k(A) such thap(K 4, V) = 0 andp(Va, Kp) = 0. We denoték(A) ®. k(B),
the space of hypocontinuous bilinear forms okkéA)’ x k(B)'. Itis a linearly topolo-
gised space when it is endowed with the linearly compact epgology generated by
W(K),Ky) ={¢|o(Ky, Kjz) = 0} whereK', andK'}; range over linearly compact
subspaces dt(A)’ andk(B)’ respectively.

The spacék(A) ®. k(B) is related to the inductive tensor produ&t] which was
generalised to linearly topologised spaceih [

(®) complete tensor producThe dualk(A) @ k(B) of k(A) ®. k(B)" is the
completion of the algebraic tensor prodigid) @ k(B). Indeed(k(A) @ k(B)) is
dense ink(A) ® k(B) [7, Th 2.12] where

a:k(4) @k(B) = (k(4)" ®. k(B)")
TRy 2Ry ¢ é(r,y)]

(&) product.Let I be a set. The linear finiteness sp&dé;c; 4;) is the product of
the k(A);s, endowed with the product topolodyp) direct sum.The linear finiteness
spacek(®;cr A;) is the coproducts;c;k(A); (made of finite linear combinations of
elements of thé(A),;s), endowed with the topology induced by the product topgplog

() through websThe comonadic structuig (! A), ¢, §) and itslinear distribution
r, can be described with respect to the web baser fery . 4| zoe givenink(A4),

we setr” = [, 24 and we takeY = D e Men (4] Tutn € K(LA) in
BT ) e Man(lA]) T en €: X =3 acial Tlal€a

o: X — ZMeMﬁn(Mﬁn(\A\)) (ZM:E(M) x#) EM-
The exponentiation' = x(z) of z satisfies:(z') = = andd(z') = (2')".
(?) analytic functionsThe linear finiteness spade(?A+) is the dual ofk(!A).
However, there is a more algebraic approaghdf the monoidk(?A+). A function
P is polynomial whenever there are symmetric hypocontinédigear formg ¢; :

2 Hypocontinuity fori-linear forms is a generalisation of the bilinear casgAnnexB, Def.18)
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x"k(A) — ksuchthat(z) = 7" ¢i(x, ..., z). The spacé(?A~+) coincides with
the completion of polynomial functions ovikf A) endowed with the linearly compact
open topology. We call the elements df(? A+) analytic functions

(1) distributions.Finally, we are concerned with theaylor expansiorformula of
Ehrhard B]. Taking into account thak(!A) is the dual space (F?Sl(]k(A)), we can
establish a parallel with distributions. For instaneesends an analytic functioA to
its image(z', F) = F(x), hence it corresponds to tltirac massat z. Besides, in
LinF'in, there exists a sequencepbjections

Tn i e Men(|A]) Tnu € K(LA) — >0 ape, € k(lA),
which are linear and continuous since their suppolt = {(u, 1) |fp = n} are fini-
tary. The vector™ = r,(z') = > 4u—n "€y of k(LA) is the convolution of: iterated
n times. This distribution sends an analytic function to a bgeneous polynomial of
degreen, that is its derivative at zero. Froml = >~ / Lz", Ehrhard deduces the
Taylor expansion formula:
1
F(z) =Y —(a",F). 1)

n!
n=0

Example 17.k(1B) = {z e k¥ ||z| € P(N?)} = k (X, Xy)

k(?BL) = {z e k¥ ||z| € Pﬁn(N2)} = k[X,, X/]

k(1B — B) = k(1B —o 1 & 1) = k(?B1)? = k[X;, X;] x k[X;, X/],
]k(F”?BJ‘) =k[Xy,Xo, ..., Xon_1, Xo]

]k<®n'B —0 B) =k [Xl,Xg, e ,Xgn_l,Xgn]Q

2 Totality and Barycentric lambda-calculus

In the present section, we explore an algebraic versiontafity spaces, where for-
muleae are interpreted as finiteness spaces with an additiotadity structure. Adapt-
ing Loader’s definition to this algebraic setting, we defirgeaeral concept dbtality
finiteness spacdt is a pair[ k(A) , 7 | wherek(A) is a linear finiteness space afids
a subset ok(A) which is equal to its second dual for a duality associatet thiépolar
as defined below. Actually, the finiteness space interpyetity formula coincides with
the first component of the totality finiteness space inteimpyehis formula.

Notations: dir (7') isthe direction of the affine spa@eand ifx € T', T = x+dir (T),
f*ry* e F* — [2* € E* : x — (y*, f(x))] is the linear adjoint off : £ — F.
AandB are relational finiteness spaces.

2.1 Totality finiteness spaces.
The polar orthogonality is defined as follows:

Vz € k(A), 2’ e k(AY, x L* 2 < (' z)=1

3 generated byV(K) = { P polynomial functio P(K) = 0} with K linearly compact.
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The polar of a subséf of k(A) is the following closed affine subspacelofA)’:
T ={2' ek(4) |Vz e T, (a',z) =1}

This set is closed singe, ') — (2’ z) is linear and separately continuouslefd) x
k(A)’ (let (z,2") € k(A) x k(A)’, {z} is linearly compact, sann (x) is open in
k(A)’; 2’ is a linear continuous form, deer(z’) is open ink(A)). Notice that, up to
the homeomorphism betwe@&q A) andk(A)”, if 7' is an affine subspace &f(A)’,
T ={x e k(A)|Vo' € T', (a/,x) = 1}.

There is a simple characterisation of polar-closed affifsggaces:

Proposition 18 (Characterisation).A subspacé of k(A) is polar-closed iff it is the
empty set, the spad€ A), or a closed affine subspace that does not corltain

Proof. If T = k(A), then7* = () and(® = k(A) = 7. If T = (), thenT** = 0.
It remains the case whetE is affine, closed and ¢ 7. The inclusion7 C 7°° is
straightforward. Let us prove the contrapositive. kgt¢ 7. Letz; € 7 andD =
dir (7) then7 = 2z + D, xp # zp andzy — z9 ¢ D. By separation Profl3, there
is z; € k(A)’ such thatz(), zo — z9) = 1 and¥d € D, (z{,d) = 0. On the one side,
if A = (z(,20) # 0, we sety) = 1x(, then(y},z0) = 1 andvd € D, (yj,d) =
+(x),d) = 0, soy, € T*. However(y), zo) = +(zo,z() = =2 # 1, hencex, ¢
7°°. Onthe other sidexy, z0) = 0, then(z(, z¢) = 1. Since0 ¢ 7 and by separation
Prop.13, there existse] € k(A)’ such that{z}, z0) = 1 andVd € D, (x},d) = 0,
hencex| € T°. Moreover,(z} + x(,z) = 1 and¥d € D, («} + z{,d) = 0 hence
x) + x( € T°. To conclude, eithetz],zo) = 0 andz} € 7° or (z + x},z0) =
1+ (wo,2}) # Landxy + x) € T°, so in both cases;y ¢ 7°°.

O

From this characterisation, we deduce another one whidtbeilseful to compute
the constructions of the model.

Corollary 19. Let7 be a subset dk(A). If 7 # (), thenT** = aff (7).
Proof. The proof is based orf C aff (7) C 7°°. (Proof in AnnexC)

Definition 20. A totality finiteness spaces a pair[k(A), 7 ] made of a linear finite-

ness spack(A) and atotality candidateT , that is is a polar closed subspacelofA).
Let TotFin be the category whose objects are totality finiteness spaugsvhose

morphisms are continuous linear functions that presereettitality candidates.

2.2 A model of classical linear logic

To prove thatTotFin is a model of classical linear logic, we use the definitiond an
results of L1, 84-5]. LetG(LF) be the double glueing of the categdiynFin along
theHOM functor. The objects af (LF) are tripled k(A) , U, U’ | whereU andU’ are
subspaces of respectivekyf A) andk(A4)’. A morphism betweehk(A), U,U’] and
[k(B), V,V']is acontinuous linear functiofi: k(A) — k(B) such thatf(U) C V/
and f*(V') C U’, wheref* is the adjoint off. The linear exponential comonad of
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LinFin is equipped with a well-behaved linear distribution = € k(A) — ' €
k(1 A) (it is routine to check the diagrams satisfiedd)y
The categorfTotFin is a subcategory @ (LF) (considering triplesk(A) , 7 ,7°]).
More precisely, it is @light orthogonalitywith respect to the polar orthogonality. This
orthogonality isstablesince it isfocussedvith respect to the focugl }: = L® 2/ <=
(¢',z) = 1 <= /() = 1. SinceLinFin is a model of classical linear logic,
TotFin is also a model of classical linear logic (c11 Th.5.14]).

The constructions inherited frolinFin as described in1[1, §5.3] are:

T(A%) =T(A)"

T(1)=T(1) = {1}, T(0) = 7(T) = {0},

T(A® B)=[T(A)®@T(B)]*, T(A& B)=T(A) xT(B),

TA=B =T aTmry,  T4e D) = 14> TO)
T(4) = [(T(A)** = {z'] 2 € T(4)}

Moreover, we describe every totality candidate as a cloffeteasubspace. This alge-
braic description is made possible thanks to the charaet#n of totality candidate
(Prop.18) and to the algebraic setting.

Proposition 21.

T(A® B) = aff (T(A) ® T(B)),
T(A— B)={fek(4)|f(T(A) €T(B)}. (2)
T(A@® B) = aff (T(A) x ker(T(B)*) Uker(T(A)*) x T(B)) (3)
T(1A) =aff («' |z € T(A)), 4
7(24) = { F € Pol(k(4))|va € T(A), F(z) =1}, (5)
T(IA — B) {FePol(]k(A> B)|Vx € T(A), F(z)ET(B)}. (6)

Proof. The proof relies on showing that® is not empty and to use Cdiro.
( Details in AnnexC, Prop21-23.)

The formulaA = B is interpreted as the totality finiteness space that is made
of morphisms of the Kleisli category. The totality candilassociated wittd = B
satisfies the following fundamental equation:

T(A= B)={F:k({(A) — k(B) analytiqVxz € T(A), F(z) € T(B)}
In other word, the totality we have defined is a logical relati
Example 22.7(B) = {(z¢,y:) € k* |z +y = 1}, T(B+) ={(1,1)},
T(1B) ={F € k(Xs, Xp)|V(2e,yt), a2t + yr = 1 = F(ae, ) = 1},
T(?BY) ={P e k[X;, Xf)|w: +y: = 1 = P(x,y:) = 1},
T<|B - B> = {(Pa Q) € ]k[XtaXf]2|:rt +yt =1= P(fft,yt) +Q($t7yt) = 1}
T(F"(]BL) = {P S ]k[Xl, . ,Xgn] |V1 S ) S n,xro;—1 + X0, = 1

= P(xlvaa v ax2n717$2n> = 1}
T(@"B — B) = {(P,Q) € k[Xy,...,X2,*|P+Q — 1€ T(I'?B)}
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Because totality candidate are affine spaces, it is natoiadldl a barycentric con-
struction to our proof system and to interpret it by a baryercombination. Totality
finiteness spaces constitute a model of linear logic with i barycentric sums.

2.3 Simply typed boolean barycentric lambda-calculus

We propose a-calculus in the style of Vaux’s algebraiecalculus [L7]. In the barycen-

tric A-calculus, sums of terms are allowed. It is well known that dipplication in\-
calculus is linear in the function but not in its argumentatis why we introduce two
kinds of termsatomic termghat do not contain barycentric sums but in the argument
of an application andbarycentric termswvhich are barycentric sums of atomic terms.
Moreover, we add booleans and a conditional construction.

Syntax. LetV be a countable set of variables. Atomic tersred barycentric term®
are inductively defined by
L —m Vie{l,...,m},a; €k,
R,S:=3%"" a;s; and S a1,
s =z | z.s|(s)T|T|F|if sthenSelseR where 2z €V

We denoteA ,; the collection of atomic terms anhl,,,, the collection of barycentric
terms. We quotient all these sets of termsddgonversion and associativity and com-
mutativity of the sum.

Types. The barycentric\-calculus is simply typed with the usual type system built on
A andA = B with the restriction that barycentric sums of atomic termes@ossible
only if the latter have the same type. Decomposing- B with exponential and linear
map:!A — B, the type system can be reformulated within linear logic:

rzeV r:Ael'+s:B

e:AFxz: A (var) I'FXzs:A=DB (abs)
———F— (app T sum
FI_(S)T '+ Zaisi:A
i=1
TrT.g (e Tre. g (false)
I'ts:B I'S:B I'R:B
(cond)

I'Fif sthenSelseR

SemanticsWe interpret the barycentriccalculus inLinFin through a standard trans-
lation of theA-calculus in LL, extended to deal with the barycentric andlban fea-
tures as follows:

Ciasl =Yie sl " =(10) [F)" = (0.1),
[i£ R then S else T)" = ([RI] (S]] + [RIf [TI; . [R], [SI] + [RI} [T]}):

Notice that sincdB] = k?, the semantics of each tersnof type B is given by its two
componentgS] = ([S], . [S],).
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Theorem 23. Totality finiteness spaces constitute a denotational mofdble barycen-
tric A-calculus.

Hence, the notion of totality we have defined is in line witk tiotion of realisability
in Logic where aterm\z.t : A = B isrealisable iffvs : A, t[z « s] : B.

3 Towards completeness

We focus attention on closed terms of ty§é = 5. As we have seen in ER2, terms
of that type are pairs of polynomial® = (P;,Py) € k[X;,.. ., Xon]? sit. for all
(ai) e k2" with agi—1 + ag; =1, ]P’t(al, ceeyGon) F IP’f(al, e agn) =1.

Theorem 24 (CompletenessEvery total function of (B = B) is the interpretation
of a term of the boolean barycentric calculus.

More precisely, we prove that every pair of polynomils 7 (®™!B — B) isboolean
i.e. there is a terr® of the boolean calculus such tH&] = (P, Py).
Let us firstintroduce some notations and intermediate tesul

—S = if SthenF else T, [-S] = ([SI; . [SI,).
ST =if SthenTelseT, [S*] = ([S], + [[S]]f )
S™ =if SthenFelseF, [S~] = (o, [S], + [SI; )
IL; = Ax1, .0 X0 - Xy, [ML] = (X2i—1, X2:).
The following pairs of polynomials are boolean:
(X2i, Xoi—1) = Xo; - (1,0) + X1 - (0,1) = [-IL], (7)
(Xai—1 + X2:,0) = Xo; - (1,0) + Xoi—1 - (1,0) = [IT ], (8)

(1 — Xoi, Xa;) = (1,0) 4+ (Xai—1, Xa;) — (X2i—1 + X2;,0) = [T+ 1L — II] ],
(1= Xgi—1,X2i1) = [T+ -IL — II] .
We prove first a weak version of the completeness theoremenlierassume that
P, + P; — 1 vanishesverywhere

Lemma 25 (Affine pairs).For every polynomiaP € k[X7, ..
nomials(1 — P, P) is boolean.

., X,], the pair of poly-

Proof. We use an induction on the degréef P. If d = 0, there exists € k such that
P =a,hencel —P,P)=[aT+ (1 —a)F].
If d > 0, let us first study the monomial case, & = [ X/ with, say,u; > 1.
(1= X#,X0#) = (1= X1) - (1,0) + Xy - (1= Xt [ X0 X0 [T X1
= [if Z; thenTelse Eq_1] = [E,] .

where the induction hypothesis ensures the existen& @nd=,_; respectively in-
terpreted byX!" " and[[,_,, X/". Finally, if P = 3" a, [] X!", then

(1-PP)=(1-3a,)(1,0)+ (> a,) (1-X" X")
=[(1-=>aun) T+ (O au) EL].
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The following algebraic lemma, allows us to reduce our peabtoAffine pairs

Lemma 26 (Spanning polynomials)Let P € k [X1,..., X2,] wherek is an infinite
field. If P vanishes on the common zeroesXaf 1 + X5; — 1, then for everyi in
{1, e Tl} there |SQ1 ek [Xl, C ,X2n] such thatP = Z?:l Qi(XQifl + Xo; — 1)

Proof. Under the change of variable: Y; = Xo; 1 + Xo; — 1, Yy, = Xo;, for
i € {1,...,n}, we denote byPy the polynomialP. Then for every(y;) € k",
Py (0,...,0,Yn+1,---,y2n) = 0. Sincek [Ya, ..., Ya,] isaring,k[Yz,..., Ys,][Y1]
is an euclidean ring. The euclidean division/af by Y; givesPy = 1Y; + R; where
Ry € k[Ys,...,Ys,][Y1] andR] € k[Ys,...,Ys,]. By iterating this process oR;
forie{l...n—1},wegetPy =3 " Q;Y; + R, whereR; € k[Y,...,Ys,] and
R, € k[Ynt1,...,Ys,]. Forall(y;) € k™, we have
Py (0,...,0,Yn+1,s -, Y2n) = Ru(Ynt1,-..,%2n) = 0. Sincek is infinite, R,, = 0
andPy = )" | Q;Y;. Change the variables, we gét= >""" | Q;(X2;—1+ Xo; —1).
O

Proof (Theoren®4). LetP € T(®"!B — B). Thanks to Ex22, we know thatP, +
P, — 1 vanishes on every zero §Xs;_1 + Xo; — 1|1 < i < n}. Then, we can apply
Lem.26: P, +Pf —1= Z?:l Qi(XQi—l + Xo; — 1) with Qi ek [Xl, Ceey Xgn] Thus,
(P, Py) =320 (1= Qi) - (1,0) 4+ Qi - (Xi—1 + X24,0)] + (1 =Py, Py) —n(1,0).
By Lem. 25, there are boolean terng and T such that(1 — Q;,Q;) = [S;] and
(1 =Py, Ps) = [T]. We have seen in Eq8)that(X2;—1 + X2,,0) = [IL]. Finally,
we have found a term whose semantics is

P = if S, thenTelseII7 )+ T —nT|.
> ;
i=1

O

Example 27 (Gustave and Por functionSeveral pairs of polynomials can interpret
the function0r € 7 (1B ® !B) — B andGus € 7 (!B ® !B ® !B) — B satisfying:

POr(T,0) =T Gus(T,0,0) =T
POr(0,T)=T Gus(0,T,0) =T
POr(F,F)=F Gus(0,0,T) =T

Gus(F,F,F)=F
The pairs of polynomials with the smallest degree are res@by:
POr: B x B=218
(x , y) = (v +yp — Teye, Tryy)
Gus: B xBx B=2-8
(x , y , 2) = (Teys +Yezs + 2e0p, Teye2e + TpYp2y)

Conclusion

The first two sections of this article emphasise the algelanadl topological description
of the model of finiteness spaces. It is important for thresoes.
First, the definition of linear finiteness spaces is so weenteid that the corresponding



Algebraic totality, towards completeness. 15

category is not obviously closed by certain operations sagchuotients or even sub-
spaces. The purpose of a more algebraic approach is to gdtrases. Our description
of reflexivity is a first step in this direction.

Second, our study has unveiled an algebraic approach tiiytatéere totality candi-
dates admit a simple algebraic and topological charaet@is such a characterisation
was not available in coherence spaces. Moreover, althoegteaded to use linear logic
to describe algebraic totality, we get a notion which calesi with the standard intu-
itionist hierarchy. Notice that the non-stafer function is total and hence definable.
Consequently, stability and totality seems to be unrelatéhis setting.

Finally, the partial completeness result is proved usinglgabraic method. This gives
a new insight into the analogy between linear algebra armiitogic. We hope to get
completeness at other types or fragments of linear logittfBairesult can already be
compared with hypercoherences in which completeness lalfisst order thanks to

sequentiality 4,16].

Acknowledgements | want to thank Pierre Hyvernat who was interested in the com-
pleteness part of this work. He gave another proof of theltressated here with an
elegant combinatorial approach and found the total detsmnipf the Por function.
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A Finiteness spaces

Proposition 11. Let K be a subspace &(A). There is an equivalence between

1. K is linearly bounded, 2|K| = U{|z||x € K} isfinitary,
3. the closure of{ is linearly compact.

Proof. Let K be linearly bounded. Lef’ € F(A)L. There is a finite dimensional
subspacef;, of K such thatk = (K N V) @ Ky. Since the dimension oK is
finite, | K| is finitary. Besides|K| N J’ = |Ky| N J’ which is finite. We proved that
|K| € F(K).

Let K be a subspace dft(A) such that|K| is finitary. The topology induced
by k(A) on its subspacé!’! is the product topology. Indeed, it is generated by
k& NV, = {z e kK| |z|nJ" =0} with J' € F(A)* and s K| N J' is finite. By
Tychonov Th.8, k!¥ is linearly compact. Since the closure Kfis a closed subspace
of kI, it is also linearly compact (cf1p, §10.9(1)]).

Let K be a linearly compact subspacelofA). Let .J’ € F(A)*. Thanks to the
incomplete basis theorem, therelissuch thatk’ = (K N Vy) @ D. If we endow
D with the discrete topology and” N V. with the topology induced bys, then the
projections on each subspace are continuous. Therdfoig Jinearly compact as the
image of a linearly compact space by a continuous functiéh §10.9(2)]. Besides,
D has a finite dimension as every discrete linearly compaaespausk is linearly
bounded.

Proposition 13 (Separation)For every closed subspadeof k(A) andx ¢ D, there
is a continuous linear form’ € k(A)" such that{x,2’) = 1 andVd € D, (d,z’) = 0.

Proof. SincenV;, = {0}, there isJ’ € F(A)* such thatr ¢ V.. Thanks to the
incomplete basis theorem, we can define a linear fofmot necessarily continuous
such that(z’,z) = 1 andVy € D + Vy., (a',y) = 0. SinceV; C kerz/, 2’ is
continuous.

Lemma 14. Let ' C k(A)' finite. If 0 ¢ aff (F”) then there exists € E such that
Vo' € F' {2/, x) = 1.

Proof. Let 2}, ...,2), € F’ be a maximal linearly independent collection. We first

prove thatF’ C aff («},...,2),): Let2’ € F’. Since(z}) is maximal, there exist
A1, ..., Ay such thate’ = > | \;2}. Assume( ¢ aff (F’), then the equation ip;:
0=(1->0, w)a’+> 1, wa} cannothave any solution. By replacingoy > . Az}
and sincex;) is independent, we get the systé — >""" | pi) Aj + 5|1 < j < n}
which has no solution. Hence, its determingntl)”~'(1 — >"" | ;) is null and
>r XA = 1. Hencez' € aff(z},...,x),). Sincez),...,z, are linearly inde-

pendent, there exists € E such that for anyl < i < n, (z},z) = 1, hence
Vo' € F' Caff (¢f,...,z)), («/,2) = 1.

Proposition 14 (Separation in the dual)Let7” be a closed affine subspaceldfd)’
such thal ¢ T". There exists: € k(A) such thatvz’ € T’ (a/,x) = 1.
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Proof. The closed subspacE does not contai, hence there exists a fundamental
linear neighbourhood dj, that isann (K) where K linearly compact ink(A), such
thatann (K) N 7" = (. For any finite subspace’ C 77, let Ty = {z € E |V2' €
F', (z',x) = 1}. One hasaff (F’) C T' and henceaff (F’) N ann (K) = . So

0 ¢ aff {z], |2’ € F'}. Applying Lem.14in K', for every finiteF” C 7", we get

x € K suchthav'z’ € F', (z/,z) =1,s00 € Tpr N K.

The collection(T» ) whereF” ranges over finite subsetstf is a filter of closed affine
subspaces dt(A). All elements of this filter meet the linearly compact sutzspl C
k(A). ThusK N\, Trr # 0, sothereis: € K suchthava’ € T/, (2/,z) = 1.

Proposition 15. (Equicontinuous spaces) Ldtbe a relational finiteness space. A sub-
spaceB’ of k(A)’ is linearly bounded if and only if there i$’ ¢ F(A)* such that
B’ C ann ]1(<A>/(VJ/).

Proof. First, B’ is linearly bounded if and only ifB’| € F(A) (see Propll). Second,
3J € F(A), B Cann(Vy) < 3J € F(A), |B'| CJ < |B'| € F(A).

Proposition 16 (Reflexivity).The map : k(A4) — k(A)” defined below is a topolog-
ical isomorphism.

Vo € k(A), u(z) : 2’ € k(A) — (', 2) = 2/ (2).

Proof. If z # 0, then there is] € F(A)* such thatr ¢ V. By separation Propl3,
there isz’ € k(A)’ such that{x’,z) = 1, hence: is injective. Letz” € k(A)” such
thatz” # 0. Letz’ € k(A) such that(z”,z’) = 1. Thanks to separation in the dual
Prop. 14, there isz € k(A) such that(z’,z) = 1 and for ally’ € kery ay (z"),
(y',z) = 0. Hencey(z) andz” coincide on both’ andker(z").

If J' € F(A)*, then the suppotttnn i 4y, (V)| = J' is in F(A)*+. By Prop.11,
Ky = annyay (Vy) is linearly compact ink(A)" andann 4y~ (K ;) is a linear
neighbourhood of) in k(A)”. Conversely, letk’ be a linearly compact subspace of
k(A)". By Propositionsd5and11, kery4)(K') is open ink(A).

We next show that the Topological dual construction of lirfedteness spaces co-
incides with the orthogonal construction of relationalt&niess spaces.

Proposition 17. The linear finiteness spade A)’ endowed with the linearly compact
open topology is isomorphic to the linear finiteness spades").

Proof. Leta’ € kI, thena’ € k(A)* where(z/,z) = 3, 4 @/, 7o We have the
following equivalencez’ is continuous if and only if there ig’ € F(A)* such that
Vo € Vi, (@', @) = 3 )4 ata = 0, thatis|z|” C J'. Consequently, we have that
2’ € k(A) ifand only if 2’ € k(A™L).

Let J € F(A). The subspack’ of k(A) is linearly compact thanks to Propl.
Henceann (k7) = {2/ ||2'| € F(A)*, |z’ nJ = 0} is open ink(A)’. Conversely, if
K C k(A) is linearly compact, thej¥| is finitary (Prop11) andV/ is a fundamental
linear neighbourhood @f. MoreoverV x| C ann (K') henceann (K ) is openink(A)’.
We proved that the two topologies coincide.
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B Interpretation of proofs in LinF'in.

Hypocontinuity can be generalised to multilinear funcson

Definition 18. Let (A;);<, be a finite collection of relational finiteness spaces.rAn
linear form¢ : x;k(A;) — k is hypocontinuousf for any (K;) collection of linearly
compact subspacesk{A;)s (respectively), for any, there exists a fundamental linear
neighbourhood’;, such thatp(x A4;) = 0 whereA; = K if i # ip andA4;, = U,,.

Any proof of the sequent I of formula of MELL+MIX+SUM is interpreted as a
continuous linear form of\l']. If I" = A4, ..., A, then a proof of the sequent can be
expressed as a hypocontinueubnear onx; [A;]’. Finally, if I' = I', A, then a proof
of this sequent can be equivalently described as a contilireear function fronf I3 |
to [A]. We freely use these different presentations in to desgribefs.

The interpretation of proofs of MELL+MIX+SUM are described Fig.3- 4 and is
similar with the presentation of.B] except for exponentials.

A proof 7 | Its interpretation
- AX []: [A] x [A] — k
FA At ¥, x (2, 7)
p1 p2 [pr] € [Ii — 4] [p2] € [I5 — A]
PP L
FFMA}_F ;FQ,A cuT IIW]]:IIFI/H/XIIF%]]/*’H{ / /
1,42 Nz = (p2(2), p(n))
[l € [T >oai=1
i i=1
s, = [x] : [I] — k
[l Ao n
v e ;a¢<ﬂpiﬂ,7>
MIX []: k—k
L 0 aa
o P [ e ] [p2] €[]
e / /
—rnon Mx|PIExnrex
1A2 Nz = [l (1) [e2] (2)
eI
.?. [o] € [17]
L S x k— k
— L [=]: [
k) !
v, a=[p] ()

Fig. 3: Interpretation of proofs of MELL+MIX+SUM irLinFin
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[p] € [T+ — (AT B)]

..... po
1A B /
4 [« : [T x ([A] ®: [B]) — k
FILAT B S ¢ (6, [p] (V)
ml: k—k
=1 1 [[ ]] a — a
p1 p2 [or] € [IT — Ad] [p2] € [I3" — A2]
YA R A, , , ,
: : [7]: [ x [L] x ([A] ®: [B]) — k
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Fig. 4: Interpretation of proofs of MELL+MIX+SUM irLinFin
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C Totality candidate characterisation.

Corollary 19. Let7T be a subset dk(A). If 7 # (), thenT** = aff (7).

Proof. Since7 C 7°** and7** is affine close, we hav@& C aff (7) C 7°**. Con-
sequently,7* C [aff (T)]* C 7*° and[aff (7)]** = T°**. Moreover, if7°* # ()
then there ist’ € k(A4)' such that for anyx € 7, (2/,z) = 1, and so for any
x € aff (T), (2/,2) = 1. We infer that0 ¢ aff (7). Thanks to the characterisation
Lem. 18, [aff (T)]*® = aff (7). Finally,aff (7)) = T°°.

Proposition 21.

T(A® B) = aff (T(A) ® T(B)),
T(A — B) ={f € KA) | [(T(A)) e T(B)}. ©)

Proof. If 2 € T(A)® andy’ € 7(B)*, thenz’ @ ' : (x,y) — (2',z)(y’,y) isin
[T(A) ® T(B)]*. Thanks to Corl9, aff (7 (A) ® T(B )) =[T(A)@T(B)**
The second equation comes from the equivalences:
felT(A)@T(B)*]* <= Ve eT(A),Vy €T(B)*, (f(z),y) =1,
<~ V2 eT(B), f(x) e T(B )

Proposition 22.
T(A® B) = aff (T(A) x ker(T(B)®) Uker(T (A)*) x T(B))

Proof. By construction,
T(Aa B) ={(z,y) | W' € T(A)*, v' € T(B)*, (z

A q z,u') + (y,v') = 1}.
Soalf (7(4)  ker(T(B)*) U ker( (( )*) x T(B)) gg
an

(A @ B). Reciprocally, let
z = (z,y) € T(A® B), u, € T(A)*® andvo € T(B)*, D(A) = dir(7(A4)*)

andD(B) = dir (7 (B)*). ThenT (A)* = uy + D(A) and7(B)® = v, + D(B).

Therefore for alld, € D(A), (d,,z) = 0; for all d;, € D(B), (d,,y) = 0 and
(ug, z) + (vy,y) = 1. If (v),y) = 0theny € ker(D(B)) andz € 7(A),soz =

(z,y) € T(A) x ker(T(A)®) (respectively, if(ug, ) = 0, thenz € ker(7(B)®) x

T(B)). If (ug,z) # 0and(v),y) # 0, thenz = (ué,x}(ﬁ,()) + (v}, y) (0, Wy,y))

Soz = (z,y) € aff (T(A) x ker(7 (B)®) Uker(7 (A)*) x T (B)).

Proposition 23.

T(1A) = aff (2' |z € T(A)), (10)
T(74) = {F € Pol(k(A))|Vz € T(A), F(z) = 1} , (11)
T(IA — B) = {F € Pol(k(A), B) |Va € T(A), F(z) € T(B)} . a2

Proof. Let 1 € Pol(k(A)) be the constant functionvr € k(A), (z',1) = 1. We
havel € {2'|z € T(A)}'. Therefore, the first equality comes from Cb®. Using ©)
and (L0), we get (2). The equality {1) comes from the linear logic equivalen€et ~
I(At) — 1.
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