209 research outputs found
Strain-induced structural instability in FeRh
We perform density functional calculations to investigate the structure of
the inter-metallic alloy FeRh under epitaxial strain. Bulk FeRh exhibits a
metamagnetic transition from a low-temperature antiferromagnetic (AFM) phase to
a ferromagnetic (FM) phase at 350K, and its strain dependence is of interest
for tuning the transition temperature to the room-temperature operating
conditions of typical memory devices. We find an unusually strong dependence of
the structural energetics on the choice of exchange-correlation functional,
with the usual local density approximation (LDA) yielding the wrong
ground-state structure, and generalized gradient (GGA) extensions being in
better agreement with the bulk experimental structure. Using the GGA we show
the existence of a metastable face-centered-cubic (fcc)-like AFM structure that
is reached from the ground state body-centered-cubic (bcc) AFM structure by
following the epitaxial Bain path. We predict that this metastable fcc-like
structure has a significantly higher conductivity than the bcc AFM phase. We
show that the behavior is well described using non-linear elasticity theory,
which captures the softening and eventual sign change of the orthorhombic shear
modulus under compressive strain, consistent with this structural instability.
Finally, we predict the existence of an additional unit-cell-doubling lattice
instability, which should be observable at low temperature.Comment: 10 pages, 7 figure
Effects of morphology on phonons of nanoscopic silver grains
The morphology of nanoscopic Ag grains significantly affects the phonons.
Atomistic simulations show that realistic nanograin models display complex
vibrational properties. (1) Single-crystalline grains. Nearly-pure torsional
and radial phonons appear at low frequencies. For low-energy, faceted models,
the breathing mode and acoustic gap (lowest frequency) are about 10% lower than
predicted by elasticity theory (ET) for a continuum sphere of the same volume.
The sharp edges and the atomic lattice split the ET-acoustic-gap quintet into a
doublet and triplet. The surface protrusions associated with nearly spherical,
high-energy models produce a smaller acoustic gap and a higher vibrational
density of states (DOS) at frequencies \nu<2 THz. (2) Twined icosahedra. In
contrast to the single-crystal case, the inherent strain produce a larger
acoustic gap, while the core atoms yield a DOS tail extending beyond the
highest frequency of single-crystalline grains. (3) Mark's decahedra, in
contrast to (1) and (2), do not have a breathing mode; although twined and
strained, do not exhibit a high-frequency tail in the DOS. (4) Irregular
nanograins. Grain boundaries and surface disorder yield non-degenerate phonon
frequencies, and significantly smaller acoustic gap. Only these nanograins
exhibit a low-frequency \nu^2 DOS in the interval 1-2 THz.Comment: Version published in Phys. Rev.
Micro-plasticity and intermittent dislocation activity in a simplified micro structural model
Here we present a model to study the micro-plastic regime of a stress-strain
curve. In this model an explicit dislocation population represents the mobile
dislocation content and an internal shear-stress field represents a mean-field
description of the immobile dislocation content. The mobile dislocations are
constrained to a simple dipolar mat geometry and modelled via a dislocation
dynamics algorithm, whilst the shear-stress field is chosen to be a sinusoidal
function of distance along the mat direction. The latter, defined by a periodic
length and a shear-stress amplitude, represents a pre-existing micro-structure.
These model parameters, along with the mobile dislocation density, are found to
admit a diversity of micro-plastic behaviour involving intermittent plasticity
in the form of a scale-free avalanche phenomenon, with an exponent for the
strain burst magnitude distribution similar to those seen in experiment and
more complex dislocation dynamics simulations.Comment: 30 pages, 12 figures, to appear in "Modelling and Simulation in
Materials Science and Engineering
Patients Prefer Boarding in Inpatient Hallways: Correlation with the National Emergency Department Overcrowding Score
Objective. The boarding of patients in Emergency Department (ED) hallways when no inpatient beds are available is a major cause of ED crowding. One solution is to board admitted patients in an inpatient rather than ED hallway. We surveyed patients to determine their preference and correlated their responses to real-time National Emergency Department Overcrowding Score (NEDOCS). Methods. This was a survey of admitted patients in the ED of an urban university level I trauma center serving a community of 5 million about their personal preferences regarding boarding. Real-time NEDOCS was calculated at the time each survey was conducted. Results. 99 total surveys were completed during October 2010, 42 (42%) patients preferred to be boarded in an inpatient hallway, 33 (33%) preferred the ED hallway, and 24 (24%) had no preference. Mean (±SD) NEDOCS (range 0–200) was 136 ± 46 for patients preferring inpatient boarding, 112 ± 39 for ED boarding, and 119 ± 43 without preference. Male patients preferred inpatient hallway boarding significantly more than females. Preference for inpatient boarding was associated with a significantly higher NEDOCS. Conclusions. In this survey study, patients prefer inpatient hallway boarding when the hospital is at or above capacity. Males prefer inpatient hallway boarding more than females. The preference for inpatient hallway boarding increases as the ED becomes more crowded
Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials
The vibrational density of states (VDOS) of nanoclusters and nanocrystalline
materials are derived from molecular-dynamics simulations using empirical
tight-binding potentials. The results show that the VDOS inside nanoclusters
can be understood as that of the corresponding bulk system compressed by the
capillary pressure. At the surface of the nanoparticles the VDOS exhibits a
strong enhancement at low energies and shows structures similar to that found
near flat crystalline surfaces. For the nanocrystalline materials an increased
VDOS is found at high and low phonon energies, in agreement with experimental
findings. The individual VDOS contributions from the grain centers, grain
boundaries, and internal surfaces show that, in the nanocrystalline materials,
the VDOS enhancements are mainly caused by the grain-boundary contributions and
that surface atoms play only a minor role. Although capillary pressures are
also present inside the grains of nanocrystalline materials, their effect on
the VDOS is different than in the cluster case which is probably due to the
inter-grain coupling of the modes via the grain-boundaries.Comment: 10 pages, 7 figures, accepted for publication in Phys. Rev.
Field-driven femtosecond magnetization dynamics induced by ultrastrong coupling to THz transients
Controlling ultrafast magnetization dynamics by a femtosecond laser is
attracting interest both in fundamental science and industry because of the
potential to achieve magnetic domain switching at ever advanced speed. Here we
report experiments illustrating the ultrastrong and fully coherent light-matter
coupling of a high-field single-cycle THz transient to the magnetization vector
in a ferromagnetic thin film. We could visualize magnetization dynamics which
occur on a timescale of the THz laser cycle and two orders of magnitude faster
than the natural precession response of electrons to an external magnetic
field, given by the Larmor frequency. We show that for one particular
scattering geometry the strong coherent optical coupling can be described
within the framework of a renormalized Landau Lifshitz equation. In addition to
fundamentally new insights to ultrafast magnetization dynamics the coherent
interaction allows for retrieving the complex time-frequency magnetic
properties and points out new opportunities in data storage technology towards
significantly higher storage speed.Comment: 25 page
Data acquisition process for an intelligent decision support in gynecology and obstetrics emergency triage
Manchester Triage System is a reliable system of triage in the emergency department of a hospital. This system when applied to a specific patients’ condition such the pregnancy has several limitations. To overcome those limitations an alternative triage IDSS was developed in the MJD. In this approach the knowledge was obtained directly from the doctors’ empirical and scientific experience to make the first version of decision models. Due to the particular gynecological and/or obstetrics requests other characteristics had been developed, namely a system that can increase patient safety for women in need of immediate care and help low-risk women avoid high-risk care, maximizing the use of resources. This paper presents the arrival flowchart, the associated decisions and the knowledge acquisition cycle. Results showed that this new approach enhances the efficiency and the safety through the appropriate use of resources and by assisting the right patient in the right place.The work of Filipe Portela was supported by the grant SFRH/BD/70156/2010 from FC
The Impact of Inpatient Boarding on ED Efficiency: A Discrete-Event Simulation Study
In this study, a discrete-event simulation approach was used to model Emergency Department’s (ED) patient flow to investigate the effect of inpatient boarding on the ED efficiency in terms of the National Emergency Department Crowding Scale (NEDOCS) score and the rate of patients who leave without being seen (LWBS). The decision variable in this model was the boarder-released-ratio defined as the ratio of admitted patients whose boarding time is zero to all admitted patients. Our analysis shows that the Overcrowded+ (a NEDOCS score over 100) ratio decreased from 88.4% to 50.4%, and the rate of LWBS patients decreased from 10.8% to 8.4% when the boarder-released-ratio changed from 0% to 100%. These results show that inpatient boarding significantly impacts both the NEDOCS score and the rate of LWBS patient and this analysis provides a quantification of the impact of boarding on emergency department patient crowding
Comparative study of deuterium retention and vacancy content of self-ion irradiated tungsten
Self-ion irradiation of pure tungsten with 2 MeV W ions provides a way of simulating microstructures generated by neutron irradiation in tungsten components of a fusion reactor. Transmission electron microscopy (TEM) has been used to characterize defects formed in tungsten samples by ion irradiation. It was found that tungsten irradiated to 0.85 dpa at relatively low temperatures develops a characteristic microstructure dominated by dislocation loops and black dots. The density and size distribution of these defects were estimated. Some of the samples exposed to self-ion irradiation were then implanted with deuterium. Thermal Desorption Spectrometry (TDS) analysis was performed to estimate the deuterium inventory as a function of irradiation damage and deuterium release as a function of temperature. Increase of inventory with increasing irradiation dose followed by slight decrease above 0.1 dpa was found. Application of Positron Annihilation Spectroscopy (PAS) to self-irradiated but not deuterium implanted samples enabled an assessment of the density of irradiation defects as a function of exposure to highenergy ions. The PAS results show that the density of defects saturates at doses in the interval from 0.085 to 0.425 displacements per atom (dpa). These results are discussed in the context of recent theoretical simulations exhibiting the saturation of defect microstructure in the high irradiation exposure limit. The saturation of damage found in PAS agrees with the simulation data described in the paper. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )Peer reviewe
- …