209 research outputs found

    Strain-induced structural instability in FeRh

    Get PDF
    We perform density functional calculations to investigate the structure of the inter-metallic alloy FeRh under epitaxial strain. Bulk FeRh exhibits a metamagnetic transition from a low-temperature antiferromagnetic (AFM) phase to a ferromagnetic (FM) phase at 350K, and its strain dependence is of interest for tuning the transition temperature to the room-temperature operating conditions of typical memory devices. We find an unusually strong dependence of the structural energetics on the choice of exchange-correlation functional, with the usual local density approximation (LDA) yielding the wrong ground-state structure, and generalized gradient (GGA) extensions being in better agreement with the bulk experimental structure. Using the GGA we show the existence of a metastable face-centered-cubic (fcc)-like AFM structure that is reached from the ground state body-centered-cubic (bcc) AFM structure by following the epitaxial Bain path. We predict that this metastable fcc-like structure has a significantly higher conductivity than the bcc AFM phase. We show that the behavior is well described using non-linear elasticity theory, which captures the softening and eventual sign change of the orthorhombic shear modulus under compressive strain, consistent with this structural instability. Finally, we predict the existence of an additional unit-cell-doubling lattice instability, which should be observable at low temperature.Comment: 10 pages, 7 figure

    Effects of morphology on phonons of nanoscopic silver grains

    Get PDF
    The morphology of nanoscopic Ag grains significantly affects the phonons. Atomistic simulations show that realistic nanograin models display complex vibrational properties. (1) Single-crystalline grains. Nearly-pure torsional and radial phonons appear at low frequencies. For low-energy, faceted models, the breathing mode and acoustic gap (lowest frequency) are about 10% lower than predicted by elasticity theory (ET) for a continuum sphere of the same volume. The sharp edges and the atomic lattice split the ET-acoustic-gap quintet into a doublet and triplet. The surface protrusions associated with nearly spherical, high-energy models produce a smaller acoustic gap and a higher vibrational density of states (DOS) at frequencies \nu<2 THz. (2) Twined icosahedra. In contrast to the single-crystal case, the inherent strain produce a larger acoustic gap, while the core atoms yield a DOS tail extending beyond the highest frequency of single-crystalline grains. (3) Mark's decahedra, in contrast to (1) and (2), do not have a breathing mode; although twined and strained, do not exhibit a high-frequency tail in the DOS. (4) Irregular nanograins. Grain boundaries and surface disorder yield non-degenerate phonon frequencies, and significantly smaller acoustic gap. Only these nanograins exhibit a low-frequency \nu^2 DOS in the interval 1-2 THz.Comment: Version published in Phys. Rev.

    Micro-plasticity and intermittent dislocation activity in a simplified micro structural model

    Full text link
    Here we present a model to study the micro-plastic regime of a stress-strain curve. In this model an explicit dislocation population represents the mobile dislocation content and an internal shear-stress field represents a mean-field description of the immobile dislocation content. The mobile dislocations are constrained to a simple dipolar mat geometry and modelled via a dislocation dynamics algorithm, whilst the shear-stress field is chosen to be a sinusoidal function of distance along the mat direction. The latter, defined by a periodic length and a shear-stress amplitude, represents a pre-existing micro-structure. These model parameters, along with the mobile dislocation density, are found to admit a diversity of micro-plastic behaviour involving intermittent plasticity in the form of a scale-free avalanche phenomenon, with an exponent for the strain burst magnitude distribution similar to those seen in experiment and more complex dislocation dynamics simulations.Comment: 30 pages, 12 figures, to appear in "Modelling and Simulation in Materials Science and Engineering

    Patients Prefer Boarding in Inpatient Hallways: Correlation with the National Emergency Department Overcrowding Score

    Get PDF
    Objective. The boarding of patients in Emergency Department (ED) hallways when no inpatient beds are available is a major cause of ED crowding. One solution is to board admitted patients in an inpatient rather than ED hallway. We surveyed patients to determine their preference and correlated their responses to real-time National Emergency Department Overcrowding Score (NEDOCS). Methods. This was a survey of admitted patients in the ED of an urban university level I trauma center serving a community of 5 million about their personal preferences regarding boarding. Real-time NEDOCS was calculated at the time each survey was conducted. Results. 99 total surveys were completed during October 2010, 42 (42%) patients preferred to be boarded in an inpatient hallway, 33 (33%) preferred the ED hallway, and 24 (24%) had no preference. Mean (±SD) NEDOCS (range 0–200) was 136 ± 46 for patients preferring inpatient boarding, 112 ± 39 for ED boarding, and 119 ± 43 without preference. Male patients preferred inpatient hallway boarding significantly more than females. Preference for inpatient boarding was associated with a significantly higher NEDOCS. Conclusions. In this survey study, patients prefer inpatient hallway boarding when the hospital is at or above capacity. Males prefer inpatient hallway boarding more than females. The preference for inpatient hallway boarding increases as the ED becomes more crowded

    Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials

    Full text link
    The vibrational density of states (VDOS) of nanoclusters and nanocrystalline materials are derived from molecular-dynamics simulations using empirical tight-binding potentials. The results show that the VDOS inside nanoclusters can be understood as that of the corresponding bulk system compressed by the capillary pressure. At the surface of the nanoparticles the VDOS exhibits a strong enhancement at low energies and shows structures similar to that found near flat crystalline surfaces. For the nanocrystalline materials an increased VDOS is found at high and low phonon energies, in agreement with experimental findings. The individual VDOS contributions from the grain centers, grain boundaries, and internal surfaces show that, in the nanocrystalline materials, the VDOS enhancements are mainly caused by the grain-boundary contributions and that surface atoms play only a minor role. Although capillary pressures are also present inside the grains of nanocrystalline materials, their effect on the VDOS is different than in the cluster case which is probably due to the inter-grain coupling of the modes via the grain-boundaries.Comment: 10 pages, 7 figures, accepted for publication in Phys. Rev.

    Field-driven femtosecond magnetization dynamics induced by ultrastrong coupling to THz transients

    Full text link
    Controlling ultrafast magnetization dynamics by a femtosecond laser is attracting interest both in fundamental science and industry because of the potential to achieve magnetic domain switching at ever advanced speed. Here we report experiments illustrating the ultrastrong and fully coherent light-matter coupling of a high-field single-cycle THz transient to the magnetization vector in a ferromagnetic thin film. We could visualize magnetization dynamics which occur on a timescale of the THz laser cycle and two orders of magnitude faster than the natural precession response of electrons to an external magnetic field, given by the Larmor frequency. We show that for one particular scattering geometry the strong coherent optical coupling can be described within the framework of a renormalized Landau Lifshitz equation. In addition to fundamentally new insights to ultrafast magnetization dynamics the coherent interaction allows for retrieving the complex time-frequency magnetic properties and points out new opportunities in data storage technology towards significantly higher storage speed.Comment: 25 page

    Data acquisition process for an intelligent decision support in gynecology and obstetrics emergency triage

    Get PDF
    Manchester Triage System is a reliable system of triage in the emergency department of a hospital. This system when applied to a specific patients’ condition such the pregnancy has several limitations. To overcome those limitations an alternative triage IDSS was developed in the MJD. In this approach the knowledge was obtained directly from the doctors’ empirical and scientific experience to make the first version of decision models. Due to the particular gynecological and/or obstetrics requests other characteristics had been developed, namely a system that can increase patient safety for women in need of immediate care and help low-risk women avoid high-risk care, maximizing the use of resources. This paper presents the arrival flowchart, the associated decisions and the knowledge acquisition cycle. Results showed that this new approach enhances the efficiency and the safety through the appropriate use of resources and by assisting the right patient in the right place.The work of Filipe Portela was supported by the grant SFRH/BD/70156/2010 from FC

    The Impact of Inpatient Boarding on ED Efficiency: A Discrete-Event Simulation Study

    Get PDF
    In this study, a discrete-event simulation approach was used to model Emergency Department’s (ED) patient flow to investigate the effect of inpatient boarding on the ED efficiency in terms of the National Emergency Department Crowding Scale (NEDOCS) score and the rate of patients who leave without being seen (LWBS). The decision variable in this model was the boarder-released-ratio defined as the ratio of admitted patients whose boarding time is zero to all admitted patients. Our analysis shows that the Overcrowded+ (a NEDOCS score over 100) ratio decreased from 88.4% to 50.4%, and the rate of LWBS patients decreased from 10.8% to 8.4% when the boarder-released-ratio changed from 0% to 100%. These results show that inpatient boarding significantly impacts both the NEDOCS score and the rate of LWBS patient and this analysis provides a quantification of the impact of boarding on emergency department patient crowding

    Comparative study of deuterium retention and vacancy content of self-ion irradiated tungsten

    Get PDF
    Self-ion irradiation of pure tungsten with 2 MeV W ions provides a way of simulating microstructures generated by neutron irradiation in tungsten components of a fusion reactor. Transmission electron microscopy (TEM) has been used to characterize defects formed in tungsten samples by ion irradiation. It was found that tungsten irradiated to 0.85 dpa at relatively low temperatures develops a characteristic microstructure dominated by dislocation loops and black dots. The density and size distribution of these defects were estimated. Some of the samples exposed to self-ion irradiation were then implanted with deuterium. Thermal Desorption Spectrometry (TDS) analysis was performed to estimate the deuterium inventory as a function of irradiation damage and deuterium release as a function of temperature. Increase of inventory with increasing irradiation dose followed by slight decrease above 0.1 dpa was found. Application of Positron Annihilation Spectroscopy (PAS) to self-irradiated but not deuterium implanted samples enabled an assessment of the density of irradiation defects as a function of exposure to highenergy ions. The PAS results show that the density of defects saturates at doses in the interval from 0.085 to 0.425 displacements per atom (dpa). These results are discussed in the context of recent theoretical simulations exhibiting the saturation of defect microstructure in the high irradiation exposure limit. The saturation of damage found in PAS agrees with the simulation data described in the paper. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )Peer reviewe
    • …
    corecore