14,178 research outputs found

    Alternative scheme for two-qubit conditional phase gate by adiabatic passage under dissipation

    Get PDF
    We check a recent proposal [H. Goto and K. Ichimura Phys. Rev. A 70, 012305 (2004)] for controlled phase gate through adiabatic passage under the influence of spontaneous emission and the cavity decay. We show a modification of above proposal could be used to generate the necessary conditional phase gates in the two-qubit Grover search. Conditioned on no photon leakage either from the atomic excited state or from the cavity mode during the gating period, we numerically analyze the success probability and the fidelity of the two-qubit conditional phase gate by adiabatic passage. The comparison made between our proposed gating scheme and a previous one shows that Goto and Ichimura's scheme is an alternative and feasible way in the optical cavity regime for two-qubit gates and could be generalised in principle to multi-qubit gates.Comment: to appear in J. Phys.

    The Ubiquitin Specific Protease USP34 promotes ubiquitin signaling at DNA double-strand breaks

    Get PDF
    published_or_final_versio

    The double Ringel-Hall algebra on a hereditary abelian finitary length category

    Full text link
    In this paper, we study the category H(ρ)\mathscr{H}^{(\rho)} of semi-stable coherent sheaves of a fixed slope ρ\rho over a weighted projective curve. This category has nice properties: it is a hereditary abelian finitary length category. We will define the Ringel-Hall algebra of H(ρ)\mathscr{H}^{(\rho)} and relate it to generalized Kac-Moody Lie algebras. Finally we obtain the Kac type theorem to describe the indecomposable objects in this category, i.e. the indecomposable semi-stable sheaves.Comment: 29 page

    Minimizing engine emissions using state-feedback control with LQR and artificial intelligence fuel estimator

    Get PDF
    This paper presents a novel engine controller targeting the reduction of gas emissions. Toxic emissions, such as Carbon Monoxide (CO) and Nitric Oxide (NOx) affect the environment and the authorities aim to limit their amount by law. Emissions are formed during the high temperature combustion process, and can be optimised by adjusting some engine operating parameters. In this paper, the model describing emissions output of the engine as a function of engine control parameters is represented as a state-space system. A closed-loop controller is developed by using statefeedback control algorithm. The closed-loop gain, K, is obtained from the LQR tuning principles. The fuel estimator developed in previous works is used in order to reduce the model from the 8th order. The results show that the controller is able to control emission to the minimum in all constraints while keeping engine running in the same performance

    SI Engine Simulation Using Residual Gas and Neural Network Modeling to Virtually Estimate the Fuel Composition

    Get PDF
    Research in electronic controlled internal combustion engines mainly focuses on improving performance and lowering the emissions. Combustion performance depends on the geometry of cylinders and on the design of all mechanical parts, which are based on the laboratory experimental research. Due to the limitations of the materials used in the engine and the continuous high operating temperature, engines function in either spark ignition or charge ignition processes. Recent research on computer controlled engines uses sensors and electronic actuators which allows switching the engine operational mode between spark ignition and charge ignition. Thus, this makes possible to mix intake fuel compositions in order to give more choices to consumers. This study employs a neural network which is capable of estimating fuel composition using the parameters of residual gas. The simulation is based on a thermodynamic engine model implemented in Matlab Simulink. The main advantages are the capabilities of the model to 1) calculate the gas exchange as a function of time in transient mode, and 2) to generate data for the design control algorithms without the need of the engine bed test environment to test various fuel compositions

    Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles

    Get PDF
    Dynamic covalent chemistry is exploited to drive morphological order–order transitions to achieve the controlled release of a model payload (e.g., silica nanoparticles) encapsulated within block copolymer vesicles. More specifically, poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate) (PGMA–PHPMA) diblock copolymer vesicles were prepared via aqueous polymerization-induced self-assembly in either the presence or absence of silica nanoparticles. Addition of 3-aminophenylboronic acid (APBA) to such vesicles results in specific binding of this reagent to some of the pendent cis-diol groups on the hydrophilic PGMA chains to form phenylboronate ester bonds in mildly alkaline aqueous solution (pH ∼ 10). This leads to a subtle increase in the effective volume fraction of this stabilizer block, which in turn causes a reduction in the packing parameter and hence induces a vesicle-to-worm (or vesicle-to-sphere) morphological transition. The evolution in copolymer morphology (and the associated sol–gel transitions) was monitored using dynamic light scattering, transmission electron microscopy, oscillatory rheology, and small-angle X-ray scattering. In contrast to the literature, in situ release of encapsulated silica nanoparticles is achieved via vesicle dissociation at room temperature; moreover, the rate of release can be fine-tuned by varying the solution pH and/or the APBA concentration. Furthermore, this strategy also works (i) for relatively thick-walled vesicles that do not normally exhibit stimulus-responsive behavior and (ii) in the presence of added salt. This novel molecular recognition strategy to trigger morphological transitions via dynamic covalent chemistry offers considerable scope for the design of new stimulus-responsive copolymer vesicles (and hydrogels) for targeted delivery and controlled release of cargoes. In particular, the conditions used in this new approach are relevant to liquid laundry formulations, whereby enzymes require protection to prevent their deactivation by bleach

    Fermionic concurrence in the extended Hubbard dimer

    Full text link
    In this paper, we introduce and study the fermionic concurrence in a two-site extended Hubbard model. Its behaviors both at the ground state and finite temperatures as function of Coulomb interaction UU (on-site) and VV (nearest-neighbor) are obtained analytically and numerically. We also investigate the change of the concurrence under a nonuniform field, including local potential and magnetic field, and find that the concurrence can be modulated by these fields.Comment: 5 pages, 7 figure

    Mach-Zehnder Bragg interferometer for a Bose-Einstein Condensate

    Full text link
    We construct a Mach-Zehnder interferometer using Bose-Einstein condensed rubidium atoms and optical Bragg diffraction. In contrast to interferometers based on normal diffraction, where only a small percentage of the atoms contribute to the signal, our Bragg diffraction interferometer uses all the condensate atoms. The condensate coherence properties and high phase-space density result in an interference pattern of nearly 100% contrast. In principle, the enclosed area of the interferometer may be arbitrarily large, making it an ideal tool that could be used in the detection of vortices, or possibly even gravitational waves.Comment: 10 pages, 3 figures, Quantum Electronics and Laser Science Conference 1999, Postdeadline papers QPD12-

    Generalized Morse Potential: Symmetry and Satellite Potentials

    Get PDF
    We study in detail the bound state spectrum of the generalized Morse potential~(GMP), which was proposed by Deng and Fan as a potential function for diatomic molecules. By connecting the corresponding Schr\"odinger equation with the Laplace equation on the hyperboloid and the Schr\"odinger equation for the P\"oschl-Teller potential, we explain the exact solvability of the problem by an so(2,2)so(2,2) symmetry algebra, and obtain an explicit realization of the latter as su(1,1)su(1,1)su(1,1) \oplus su(1,1). We prove that some of the so(2,2)so(2,2) generators connect among themselves wave functions belonging to different GMP's (called satellite potentials). The conserved quantity is some combination of the potential parameters instead of the level energy, as for potential algebras. Hence, so(2,2)so(2,2) belongs to a new class of symmetry algebras. We also stress the usefulness of our algebraic results for simplifying the calculation of Frank-Condon factors for electromagnetic transitions between rovibrational levels based on different electronic states.Comment: 23 pages, LaTeX, 2 figures (on request). one LaTeX problem settle
    corecore