1,069 research outputs found

    Logistic Constraints on 3D Termite Construction

    Full text link
    Abstract. The building behaviour of termites has previously been modelled mathematically in two dimensions. However, physical and logistic constraints were not taken into account in these models. Here, we develop and test a three-dimensional agent-based model of this process that places realistic constraints on the diffusion of pheromones, the movement of termites, and the integrity of the architecture that they construct. The following scenarios are modelled: the use of a pheromone template in the construction of a simple royal chamber, the effect of wind on this process, and the construction of covered pathways. We consider the role of the third dimension and the effect of logistic constraints on termite behaviour and, reciprocally, the structures that they create. For instance, when agents find it difficult to reach some elevated or exterior areas of the growing structure, building proceeds at a reduced rate in these areas, ultimately influencing the range of termite-buildable architectures

    Finding groups in data: Cluster analysis with ants

    Get PDF
    Wepresent in this paper a modification of Lumer and Faieta’s algorithm for data clustering. This approach mimics the clustering behavior observed in real ant colonies. This algorithm discovers automatically clusters in numerical data without prior knowledge of possible number of clusters. In this paper we focus on ant-based clustering algorithms, a particular kind of a swarm intelligent system, and on the effects on the final clustering by using during the classification differentmetrics of dissimilarity: Euclidean, Cosine, and Gower measures. Clustering with swarm-based algorithms is emerging as an alternative to more conventional clustering methods, such as e.g. k-means, etc. Among the many bio-inspired techniques, ant clustering algorithms have received special attention, especially because they still require much investigation to improve performance, stability and other key features that would make such algorithms mature tools for data mining. As a case study, this paper focus on the behavior of clustering procedures in those new approaches. The proposed algorithm and its modifications are evaluated in a number of well-known benchmark datasets. Empirical results clearly show that ant-based clustering algorithms performs well when compared to another techniques

    Coupled map gas: structure formation and dynamics of interacting motile elements with internal dynamics

    Full text link
    A model of interacting motile chaotic elements is proposed. The chaotic elements are distributed in space and interact with each other through interactions depending on their positions and their internal states. As the value of a governing parameter is changed, the model exhibits successive phase changes with novel pattern dynamics, including spatial clustering, fusion and fission of clusters and intermittent diffusion of elements. We explain the manner in which the interplay between internal dynamics and interaction leads to this behavior by employing certain quantities characterizing diffusion, correlation, and the information cascade of synchronization. Keywords: collective motion, coupled map system, interacting motile elementsComment: 27 pages, 12 figures; submitted to Physica

    Weber’s Law-based perception and the stability of animal groups

    Get PDF
    Group living animals form aggregations and flocks that remain cohesive in spite of internal movements of individuals. This is possible because individual group members repeatedly adjust their position and motion in response to the position and motion of other group members. Here we develop a theoretical approach to address the question, what general features -- if any -- underlie the interaction rules that mediate group stability in animals of all species? We do so by considering how the spatial organisation of a group would change in the complete absence of interactions. Without interactions, a group would disperse in a way that can be easily characterised in terms of Fick's diffusion equations. We can hence address the inverse theoretical problem of finding the individual-level interaction responses that are required to counterbalance diffusion and to preserve group stability. We show that an individual-level response to neighbour densities in the form of Weber's law (a 'universal' law describing the functioning of the sensory systems of animals of all species) results in an 'anti-diffusion' term at the group level. On short time scales, this anti-diffusion restores the initial group configuration in a way which is reminiscent of methods for image deblurring in image processing. We also show that any non-homogeneous, spatial density distribution can be preserved over time if individual movement patterns have the form of a Weber's law response. Weber's law describes the fundamental functioning of perceptual systems. Our study indicates that it is also a necessary -- but not sufficient -- feature of collective interactions in stable animal groups

    Interactive robots in experimental biology

    Get PDF
    Interactive robots have the potential to revolutionise the study of social behaviour because they provide several methodological advances. In interactions with live animals, the behaviour of robots can be standardised, morphology and behaviour can be decoupled (so that different morphologies and behavioural strategies can be combined), behaviour can be manipulated in complex interaction sequences and models of behaviour can be embodied by the robot and thereby be tested. Furthermore, robots can be used as demonstrators in experiments on social learning. As we discuss here, the opportunities that robots create for new experimental approaches have far-reaching consequences for research in fields such as mate choice, cooperation, social learning, personality studies and collective behaviour. © 2011 Elsevier Ltd

    Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles

    Get PDF
    We construct the hydrodynamic equations for {\em suspensions} of self-propelled particles (SPPs) with spontaneous orientational order, and make a number of striking, testable predictions:(i) SPP suspensions with the symmetry of a true {\em nematic} are {\em always} absolutely unstable at long wavelengths.(ii) SPP suspensions with {\em polar}, i.e., head-tail {\em asymmetric}, order support novel propagating modes at long wavelengths, coupling orientation, flow, and concentration. (iii) In a wavenumber regime accessible only in low Reynolds number systems such as bacteria, polar-ordered suspensions are invariably convectively unstable.(iv) The variance in the number N of particles, divided by the mean , diverges as 2/3^{2/3} in polar-ordered SPP suspensions.Comment: submitted to Phys Rev Let
    corecore