78 research outputs found

    IDIOSYNCRATIC RISK AND AUSTRALIAN EQUITY RETURNS

    Get PDF
    In this paper we investigate the relationship between portfolio returns and idiosyncratic risk for Australian stocks. We report that the portfolio with highest idiosyncratic volatility generates an average annual return of over 45%. We observe additionally that the outcome is consistent with an exponential growth process for stock prices. Further, consistent with Malkiel and Xu, we observe that a stock’s idiosyncratic volatility is inversely correlated with the size of the underlying firm. Thus, our model advances an interpretation of the Fama and French finding that portfolios of stocks of small firms offer superior risk-adjusted returns. Moreover, our findings challenge the portfolio theory of Markowitz (1959) and the asset-pricing model of Sharpe (1964).Idiosyncratic risk, Capital Asset Pricing Model, Size effect

    Oceanography of Cowichan Bay: A background view for early marine survival of Chinook and Coho salmon

    Get PDF
    Early Marine Survival (EMS) of Chinook and Coho salmon in the Salish Sea has plummeted over the past decades, and both bottom-up and top-down mechanisms for decline have been proposed. As a background for an ecosystem-based assessment of EMS, a pilot study on the basic oceanography of a small sub-component of the system was launched in spring and early summer, 2013. A repeat sampling grid covering Cowichan Bay and immediately connected waters was established, and then sampled on weekly intervals for temperature, salinity, chlorophyll fluorescence, nutrients and zooplankton. Oceanographic studies were carried out concurrently with fisheries assessments. A longer section was carried out at monthly intervals, with the purpose of connecting Cowichan Bay to the Strait of Georgia. This talk will present findings from this study, identify key shortcoming and suggest an approach to expand the pilot study to the scale of the Salish Sea

    UKIRT under new management: status and plans

    Get PDF
    The United Kingdom Infrared Telescope (UKIRT) observatory has been transferred to the ownership of the University of Hawaii (UH) and is now being managed by UH. We have established partnerships with several organizations to utilize the UKIRT for science projects and to support its operation. Our main partners are the U.S. Naval Observatory (USNO), the East Asian Observatory (EAO), and the UKIRT microlensing team (JPL/IPAC/OSU/Vanderbilt). The USNO is working on deep northern hemisphere surveys in the H and K bands and the UKIRT microlensing team is running a monitoring campaign of the Galactic bulge. EAO, UH, and USNO have individual P.I. research programs. Most of the observations are using the Wide Field Camera (WFCAM), but the older suite of cassegrain instruments are still fully operational. Data processing and archiving continue to be done CASU and WSA in the UK. We are working on a concept to upgrade the WFCAM with new larger infrared detector arrays for substantially improved survey efficiency

    Effect of cadence on locomotor–respiratory coupling during upper-body exercise

    Get PDF
    Introduction: Asynchronous arm-cranking performed at high cadences elicits greater cardiorespiratory responses compared to low cadences. This has been attributed to increased postural demand and locomotor–respiratory coupling (LRC), and yet, this has not been empirically tested. This study aimed to assess the effects of cadence on cardiorespiratory responses and LRC during upper-body exercise. Methods: Eight recreationally-active men performed arm-cranking exercise at moderate and severe intensities that were separated by 10 min of rest. At each intensity, participants exercised for 4 min at each of three cadences (50, 70, and 90 rev min−1) in a random order, with 4 min rest-periods applied in-between cadences. Exercise measures included LRC via whole- and half-integer ratios, cardiorespiratory function, perceptions of effort (RPE and dyspnoea), and diaphragm EMG using an oesophageal catheter. Results: The prevalence of LRC during moderate exercise was highest at 70 vs. 50 rev min−1 (27 ± 10 vs. 13 ± 9%, p = 0.000) and during severe exercise at 90 vs. 50 rev min−1 (24 ± 7 vs. 18 ± 5%, p = 0.034), with a shorter inspiratory time and higher mean inspiratory flow (p < 0.05) at higher cadences. During moderate exercise, (Formula presented.) and fC were higher at 90 rev min−1 (p < 0.05) relative to 70 and 50 rev min−1 ((Formula presented.) 1.19 ± 0.25 vs. 1.05 ± 0.21 vs. 0.97 ± 0.24 L min−1; fC 116 ± 11 vs. 101 ± 13 vs. 101 ± 12 b min−1), with concomitantly elevated dyspnoea. There were no discernible cadence-mediated effects on diaphragm EMG. Conclusion: Participants engage in LRC to a greater extent at moderate-high cadences which, in turn, increase respiratory airflow. Cadence rate should be carefully considered when designing aerobic training programmes involving the upper-limbs

    UKIRT under new management: status and plans

    Get PDF
    The United Kingdom Infrared Telescope (UKIRT) observatory has been transferred to the ownership of the University of Hawaii (UH) and is now being managed by UH. We have established partnerships with several organizations to utilize the UKIRT for science projects and to support its operation. Our main partners are the U.S. Naval Observatory (USNO), the East Asian Observatory (EAO), and the UKIRT microlensing team (JPL/IPAC/OSU/Vanderbilt). The USNO is working on deep northern hemisphere surveys in the H and K bands and the UKIRT microlensing team is running a monitoring campaign of the Galactic bulge. EAO, UH, and USNO have individual P.I. research programs. Most of the observations are using the Wide Field Camera (WFCAM), but the older suite of cassegrain instruments are still fully operational. Data processing and archiving continue to be done CASU and WSA in the UK. We are working on a concept to upgrade the WFCAM with new larger infrared detector arrays for substantially improved survey efficiency

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Package PowerTrain: A Modelica library for modeling and simulation of vehicle power trains

    Get PDF
    In this article a new Modelica library to model vehicle power trains is discussed. An overview of the elements within the library is given, such as planetary gearsets, laminar clutches, torque losses, driver, warm up model. The library is demonstrated through the discussion of two illustrative examples, for drive cycle fuel consumption prediction and for investigating gearshift transition dynamics of an automatic gearbox. Together with the Modelica simulation environment Dymola, this library is suited and used for HIL (Hardware-In-the-Loop) simulations

    The PowerTrain Library: New Concepts and New Fields of Application

    Get PDF
    Version 2.0 of the PowerTrain library will be released in March 2005. This article presents the new release, which is enriched by optional consideration of 3D effects, a simpler signal bus concept, new components and example models for flexible drivelines, 4wd drivelines and hybrid vehicles. In addition, various new driver models have been added

    Coordinated automotive libraries for vehicle system modelling

    Get PDF
    A new free Modelica library, called VehicleInterfaces, has been developed to promote compatibility between Modelica automotive libraries. The library provides standard system interface definitions that enable the whole vehicle system to be conveniently modelled. Example vehicle models are also provided to illustrate the use of the inferface definitions. Practical applications and examples of how these interface definitions can be used are presented
    corecore