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Abstract 

A new free Modelica library, called VehicleInter-
faces, has been developed to promote compatibility 
between Modelica automotive libraries.  The library 
provides standard system interface definitions that 
enable the whole vehicle system to be conveniently 
modelled.  Example vehicle models are also pro-
vided to illustrate the use of the interface definitions. 
Practical applications and examples of how these 
interface definitions can be used are presented. 

1 Motivation 

A number of Modelica library developers are work-
ing independently on automotive libraries focused on 
different vehicle systems such as PowerTrain [1], 
Transmission [2], VehicleDynamics [3] and Smar-
tElectricDrives [4]. For many simulation activities it 
is desirable to be able to create whole system models 
[5] that combine elements from the different libraries 

and provide easy ways to integrate user-developed 
models.   

This work is based on previous work carried out by 
the authors and also builds on the work done on the 
Modelica Vehicle Model Architecture published by 
Tiller et. al.[6]. 

The approach adopted in developing this library has 
been to focus on standardising the subsystem inter-
faces rather than developing a standard vehicle 
model architecture. Several different example archi-
tectures based on these interfaces are provided as 
examples in the VehicleInterfaces library. A typical 
example is shown in Figure 1 where all the main 
subsystems (driver, driverEnvironment, engine, 
transmission, driveline, chassis, brakes, accessories, 
road, atmosphere, etc.) are included at the top level 
of the model.  In this example it is assumed that the 
controllers for the respective subsystems are part of 
the subsystem model. In other architectures, the con-
trollers might be on the same level as the subsys-
tems. 

All subsystem models in the architecture are de-

Figure 1: Example vehicle model using VehicleInterfaces shown in Dymola 6.0b 
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clared as “replaceable”. When instanting an archic-
tecture model, the desired subsystem model can be 
selected via a redeclaration.  In Dymola there are two 
ways to redeclare components using the graphical 
user interface as shown in Figure 2.  

The dialog box shown at the top of Figure 2 is ac-
cessed through the model browser by right-clicking 
on the base class being extended. The scroll down 
menus show the available subsystem models that can 
be selected. As usual, these menus are automatically 
constructed via the annotation “choicesAllMatching 
= true” (all model components are shown that are 
loaded into the Modelica simulation environment 
and are derived by inheritance from the respective 
superclass). 

In Dymola 6 redeclarations can be made by right 
clicking on a replaceable subsystem, the context 
menu then allows the user to select an option from 
the list of matching types.  The list is determined 

using the same annotation as the dialog box method. 

2 Interface Definitions 

The subsystem decomposition used within the Vehi-
cleInterfaces package follows the same basic struc-
ture as used in the Modelica VMA developed by 
Tiller et al [6].  In the following sections we will dis-
cuss the subsystems and modelling methods intro-
duced with the VehicleInterfaces package. 

2.1 Conditional Connectors 

The VehicleInterfaces package makes extensive use 
of conditional connectors so that a single subsystem 
interface definition can be used for a wide range of 
applications.  A conditional component, such as a 
connector, is one that is only instantiated in the 
model if the corresponding Boolean condition is true. 
The Modelica code for an example conditional com-
ponent is shown in Figure 3.  In this example the 
component shaft is only instantiated in the model if 
the user sets the parameter includeInertia=true, if 
the parameter is false then the component and all 
related connections are completely removed from the 
model. 

If we consider the engine subsystem, this includes 
conditional connectors for the engineMount and ac-
celeratorPedal connections.  The engineMount con-
nector models the physical connection between the 
engine block and the engine mounting system as a 
MultiBody connection. This is not always required, 
for example when modelling the engine as a simple 
1D system.  Similarly the acceleratorPedal, which is 
a 1D translational connector provides a physical 
connection between the engine subsystem and the 
driver environment, which isn’t required in a drive-
by-wire vehicle. 

By using conditional connectors these components 
are completely eliminated from a model when they 
are not required.  If they were not eliminated it 
would be necessary to add additional components to 
ensure that all the flow variables within the connec-
tors were being properly defined.  This would add 
additional overhead to the simulation task and should 

Figure 2: Two methods for the redeclaration  

of subsystem models in Dymola 6 

 

model Example  
  parameter Boolean includeInertia=false; 
  Rotational.Inertia shaft if includeInertia; 
  ... 
end Example; 
 

Figure 3: Example of a conditionally instantiated 
Inertia component. 
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be avoided whenever possible. 

Conditional connectors are used wherever a connec-
tor might not be needed in every application.  These 
include all MultiBody connectors and all the physi-
cal connections between the driver environment and 
the subsystem models. 

2.2 Modelling Rotating Components  

Within VehicleInterfaces rather than limiting our-
selves to modelling rotating components as a simple 
1D rotation we have built in the flexibility to model 
rotating components as MultiBody systems.  This 
has been possible through the development of a new 
connector called FlangeWithBearing. This is a hier-
archical connector that contains a 1D rotational con-
nector and a conditional MultiBody connector.  The 
use of the MultiBody connector is controlled by a 
parameter in the connector.  This enables the 
FlangeWithBearing connector to model rotational 
effects as a purely 1D system or it can correctly in-
clude MultiBody effects.  The Modelica definition of 
this new connector is shown in Figure 4 and the 
connector is now available within the Multi-
Body.Interfaces package of the Modelica Standard 
Library 2.2.1.  

Where this connector is used in an interface defini-
tion the parameter includeBearingConnector is 
linked to a parameter at the model level so that the 
model developer can easily activate this connector if 
required.  An example of how this is used is shown 
in Figure 5 where the driveline interface definitions 
for a 2-axle vehicle are shown. In the Base class we 
can see that three Boolean parameters are declared 
as protected parameters.  This means they are only 
available to the model developer as they create the 
subsystem model and cannot be changed when the 
model is used.   

The use of the bearing connectors needs to carefully 
considered to avoid inadvertently creating mechani-
cal loops in the model.  The following example 
guidelines for the engine and transmission subsys-
tems should help highlight the issues so that the 

model developer can determine when it is appropri-
ate to use the bearing connectors.  For the engine and 
transmission subsystem models:   

1. When they are modelled as a pure 1D rotational 
system then no bearing connectors are required. 

2. When they are modelled as a 1D rotational sys-
tem with reactions on to a MultiBody system 
then no bearing connectors are required 

3. When they are being modelled as a MultiBody 
system but they are rigidly connected together 
then the bearing frame between the engine and 
transmission should not be included.  In this case 
the transmissionMount connector should support 
the MultiBody elements of the transmission.  
The rest of the model then needs to be consid-
ered before deciding whether to include the bear-
ing between the transmission and driveline or be-
tween the engine and accessories subsystems. 

4. When they are being modelled as a MultiBody 
system but they are not rigidly connected to-

model Base  
  MultiBody.Interfaces.FlangeWithBearing  
    TransmissionFlange( 
      final includeBearingConnector= 
      includeTransmissionBearing); 
  VehicleInterfaces.Interfaces.ControlBus 
    ControlBus 
  MultiBody.Interfaces.Frame_a drivelineMount 
    if includeMount; 
protected 
  parameter Boolean  
            includeWheelBearings=false; 
  parameter Boolean includeMount=false; 
  parameter Boolean  
            includeTransmissionBearing=false; 
end Base; 
 
model TwoAxleBase 
  extends Base; 
  MultiBody.Interfaces.FlangeWithBearing  
    WheelHub_1( 
      final includeBearingConnector= 
      includeWheelBearings); 
  MultiBody.Interfaces.FlangeWithBearing  
    WheelHub_2( 
      final includeBearingConnector= 
      includeWheelBearings); 
  MultiBody.Interfaces.FlangeWithBearing  
    WheelHub_3( 
      final includeBearingConnector= 
      includeWheelBearings); 
  MultiBody.Interfaces.FlangeWithBearing  
    WheelHub_4( 
      final includeBearingConnector= 
      includeWheelBearings); 
end TwoAxleBase; 

 

Figure 5: Modelica code for the  
driveline interface definition 

 

 

 

connector FlangeWithBearing  
  parameter Boolean  
    includeBearingConnector=false; 
  Rotational.Interfaces.Flange_a flange; 
  MultiBody.Interfaces.Frame bearingFrame 
    if IncludeBearingConnector; 
end FlangeWithBearing; 
 

Figure 4: Modelica code and icon for  

the FlangeWithBearing connector 
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gether then the bearing frame between the engine 
and transmission will be required to support the 
intermediate drive shaft. 

2.3 Driver and Driver Environment Subsys-
tems 

The driver and the physical interaction between 
driver and vehicle can be modelled as separate sub-
systems or combined as a single subsystem within 
the VehicleInterfaces package. The decision is down 
to the model developers and will influence the extent 
to which models are reusable in other applications. 
The physical interactions, such as steering and throt-
tle controls and feedback signals, are referred to as 
the driver environment within VehicleInterfaces. 

When the driver and driver environment are mod-
elled as separate subsystems the driver environment 
model is responsible for converting the normalised 
instructions passed from the driver model in to the 
correct values for this particular vehicle model.  For 
example, a driver model should demand normalised 
steering wheel angles between –1 and 1 and this 
should be translated by the driver environment sub-
system in to the appropriate steering wheel angle for 
the current vehicle.  This enables the driver model to 
be defined in a generic way for use on many differ-
ent vehicles.   

The interaction between the driver and driver envi-
ronment subsystem is modelled using an expandable 
connector known as the driver interaction bus.  The 
connections passed across this bus are a combination 
of signal values and normalised physical connec-
tions.  A normalised physical connection contains 
both the normalised position and the actual force or 
torque being applied across the connection.  The 
naming and types for the signals that are exchanged 
between these two subsystems is defined within the 
VehicleInterfaces package to ensure compatibility 
between driver models and driver environment mod-
els from different libraries. 

When only the driver environment subsystem is pre-
sent this should also include the driver model and it 
is the responsibility of the individual model develop-
ers to provide a logical separation between the envi-
ronment and driver models. 

2.4 Powerplant Mounts Subsystem 

Unlike in the Modelica VMA the Powertrain mount-
ing systems are modelled as separate subsystems 
when they are required in a model.  In Figure 1 we 
see that there are two separate mounting systems, 
one for supporting the engine and transmission and 

another that supports the differential.  The modelling 
of the mounting systems in this way reflects the 
physical reality of a rear-wheel drive vehicle in 
which the engine and transmission are rigidly con-
nected together and mounted as one system at the 
front of the vehicle and the differential in the rear 
axle is independently mounted.  Vehicles with dif-
ferent driveline configurations would require a dif-
ferent arrangement for the mounting systems. 

The mounting subsystems are all defined by extend-
ing a base class that includes a MultiBody connector 
that should be connected to the vehicle body.  There 
are 3 mounting subsystem templates provided within 
the VehicleInterfaces package that can be used to 
support differing numbers of powertrain subsystems.  
The connections to the powertrain subsystems are 
modelled using MultiBody connectors. 

When the mounting systems are not being modelled 
these subsystems can be removed from the model 
architecture to simplify the vehicle model. 

2.5 Road Subsystem 

The road subsystem is used to define the road sur-
face and supports varying friction coefficients, cur-
vature, gradients and banking.  The road is defined 
as a series of replaceable functions that are used to 
determine the position along the road, the normal to 
the road surface, the current heading of the road cen-
tre line and the friction coefficient.  By redeclaration 
of these functions a wide range of road models from 
a straight flat road through to a curved undulating 
road can be created. 

When a road is used at the top level of a model it 
should be declared with the prefix inner so that it can 
be referenced from any subsystem or component 
within the model that needs to determine information 
about the road surface.  When a subsystem needs to 
refer to the road subsystem it should contain an outer 
version of the road subsystem and this will then en-
able it to access the road definition from the top-
level of the model. 

2.6 Atmosphere Subsystem 

The atmosphere subsystem defines the ambient con-
ditions including temperature, pressure, humidity, 
wind speed and direction.  The atmosphere is defined 
as a series of replaceable functions that determine 
these conditions at a specified point in space.  This 
enables the ambient conditions to vary with the vehi-
cle position so effects such as wind can be varied as 
the vehicle drives along a track. 
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2.7 Example Vehicle Architectures 

Using these interface definitions we can create a va-
riety of vehicle model architectures to suit different 
applications.  Figure 1 shows an example architec-
ture for a rear-wheel drive automatic transmission 
passenger car that includes a separate driver model 
and powertrain mounting systems.  Figure 6 shows 
some other possible model architectures including 
(from top to bottom) a manual transmission vehicle; 
an alternative layout for an automatic transmission 
vehicle; a power-split hybrid vehicle model. In all 
these cases it is possible to re-use the same subsys-
tem models because the interface definitions are con-
sistent even though the top-level model appears very 
different. 

3 Control Bus Structure 

3.1 Overview  

Within the VehicleInterfaces library every subsystem 
that forms part of the vehicle model has a connection 
to the control bus.  The control bus is used to pass 
information between the subsystems that would 
normally be passed along the CAN bus or similar 
vehicle communication network.  The VehicleInter-
faces control bus does not model how the vehicle 
network communication actually works but instead 
provides a structure by which the same information 
can be exchanged between the various subsystems. 

The control bus is modelled using a series of hierar-
chical expandable connectors, which means that the 
user can place any signal they need on to the control 
bus.  As part of the VehicleInterfaces library a mini-
mum set of signals and a structure for the control bus 
is recommended so that systems that follow these 
recommendations can easily be coupled together.   

A hierarchical structure to the control bus is pro-
posed where the subsystem name is used to help 
structure the signals on the bus.  For example signals 
placed on to the control bus from the chassis subsys-
tem should be placed within the chassisBus structure 
of the controlBus, see Figure 7 for an illustration of 
the current minimum set of signals for the control 
bus.  A full naming convention is included with the 
VehicleInterfaces package. 

3.2 Working with the Control Bus 

Every subsystem within the VehicleInterfaces pack-
age contains a controlBus connector that will allow 
the subsystem access to the complete control bus 

structure.  To access a signal within the control bus 
hierarchy it is first necessary to add the appropriate 
sub-bus connector to the model as a node, i.e. a pro-
tected connector.  Signals within this part of the con-
trol hierarchy can then be accessed by connecting to 
the sub-bus connector. Figure 8 shows how the lon-
gitudinal velocity signal within the chassisBus sub-
bus on the vehicle controlBus can be accessed.  The 
Modelica code for this example is also shown.  This 
methodology is necessary due to the way the Mode-
lica language specification defines expandable con-
nectors [7]. 

Figure 6: Example model architectures 
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3.3 The Sub-bus Connectors 

The sub-bus connectors are defined within the Vehi-
cleInterfaces.Interfaces package and are all defined 
as expandable connectors.  As such the connectors 
don’t contain any signal names and yet we would 
like it to be possible to generate a list of pre-defined 
names to make it easier for the user to connect to the 
control bus and access the appropriate signal. 

To enable this to happen, within the VehicleInter-
faces package each expandable connector has been 
extended and the standard signals have been defined 
within these extended connectors.  These connectors 
are not intended for use directly within a model but 
are necessary to enable a Modelica tool to generate a 
list of possible signal names.  Within Dymola, when 
a connection to an expandable connector is made a 
dialog box is generated with a list of signal names.  
The list of signal names is now determined by 
searching through the open libraries to find connec-
tors that extend from the type of expandable connec-
tor used in the current connection.  All the signals 
that are defined within the connectors that extend 
from the base connector are then added to the list and 
the user can select the appropriate one. 

This functionality means that the user can easily 
connect to one of the standard signal names but also 
means that it is not absolutely necessary for them to 
assign values to every signal that is defined as part of 
the standard VehicleInterfaces control bus.  It also 
allows different library developers to extend the con-

trol signal bus in appropriate ways for their library 
and to have the names automatically appear in mod-
els. 

4 Usage Examples 

Three different usage examples are presented to il-
lustrate different ways that the interface templates 
can be used to model vehicles with different levels of 
detail.  The first two examples illustrate two different 
approaches to modelling a rear-wheel drive driveline 
and the third example illustrates how the different 
commercial model libraries that are adopting these 
interface definitions can be coupled together. 

4.1 Rear-Wheel-Drive Vehicle as a 1D System 

The simplest way to model a vehicle powertrain is as 
a 1D rotational system.  This approach does have 
many uses, such as fuel economy studies, and this 
example illustrates how the interface templates can 
be used in this way.  Figure 9 shows the driveline 
model diagram for a rear-wheel drive vehicle mod-
elled as a purely 1D rotational system.  Components 
in this model are taken from the Modelica Standard 
Library and the PowerTrain library. 

In this example the parameters that control the condi-
tional connectors for the driveline interface class are 
all left with their default values of false.  This means 

Figure 7: Current minimum set of 

signals in the control bus 

model controlBusDemo  
  extends TwoAxleBase; 
protected  
  VehicleInterfaces.Interfaces.ChassisBus  
    chassisBus; 
public  
  Modelica.Blocks.Math.Gain gain; 
equation  
  connect(controlBus.chassisBus,  

  chassisBus); 
  connect(gain.u,  
          chassisBus.longitudinalVelocity); 
end controlBusDemo; 

 

Figure 8: Accessing signals on the control  
bus (model diagram in Dymola) 
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that the bearing frame connectors within the 
FlangeWithBearing connectors (transmissionFlange, 
wheelHub_1, etc.) are not instantiated in the model 
and neither is the drivelineMount connector. This 
leaves us with a simple model using just the 1D rota-
tional connectors for the transmission and wheel 
hubs. 

When modelling a 1D rotational system it is some-
times necessary to include the reactions of the 1D 
rotational system on a MultiBody system [8].    
Adapting the rear-wheel-drive model to include Mul-
tiBody effects would lead to the diagram in Figure 
10.  To enable this model to be built the driveline-
Mount connector needs to be enabled so that the 
MultiBody reactions can be transmitted in to the ve-
hicle body.  The bearing frame connectors within the 
transmissionFlange and wheelHub connectors are 
not required in this model as the driveline is not be-
ing modelled as a MultiBody system.   

4.2 Rear-Wheel-Drive Vehicle as a MultiBody 
System 

The same driveline interface template can be used to 
model the complete driveline as a MultiBody system.  
In this case the use of the bearing connectors within 
the FlangeWithBearing connectors needs to be 
thought about carefully in order to make sure me-
chanical loops aren’t inadvertently created.  Consid-
eration needs to be given to the way in which the 
MultiBody components are being supported both in 
the physical system and in the model itself. 

In the case of a rear-wheel drive vehicle the prop-
shaft is supported by the transmission and the differ-
ential.  So in this case the bearing frame in the 
transmissionFlange needs to be included so that this 
end of the propshaft is correctly supported.  The dif-
ferential is also being modelled as a MultiBody sys-
tem so this will support the other end of the prop-
shaft.  The differential itself is typically supported by 
an elastic mounting system that would be connected 

Figure 10: 1D Rotational model of a rear-wheel 
drive driveline with reactions on to a MultiBody 

system 

Figure 9: Simple 1D Rotational model  
of a rear-wheel drive driveline 

Figure 11: MultiBody model of  
a rear-wheel drive driveline 
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to the driveline model via the drivelineMount con-
nector.  

Finally it needs to be considered how the halfshafts 
are supported, one end is attached to the differential 
and supported by the output bearings of the differen-
tial, the other end is attached to the wheel hub and 
supported by the wheel bearing.  This means the 
bearing frames in the wheel hub connectors need to 
be included.  An example of how this subsystem 
might look is shown in Figure 11. 

4.3 Active 4WD Vehicle Model 

By combining models from the PowerTrain and Ve-
hicleDynamics libraries it is possible to study the 
handling benefits of active four-wheel-drive systems 
and compare this to the handling of the same vehicle 
with a conventional, passive four-wheel drive sys-
tem. 

The vehicle model is created using various subsys-
tem models from the PowerTrain library and the Ve-
hicleDynamics library.  The PowerTrain library con-
tains an active four-wheel drive system model shown 
in Figure 12.  The driveline is modelled as a 1D rota-
tional system and includes the reactions on to the 
vehicle body.  To make this 1D driveline model 
compatible with a MultiBody chassis model from the 
VehicleDynamics library we need to activate the flag 
usingMultiBodyChassis in the “Advanced” menu of 
the driveline component parameter dialog. When this 

parameter is set to true the bearing connectors within 
the wheelHub connectors are included and zero 
forces and torques are applied to these bearing con-
nectors.   

The driveline control system model within the Pow-
erTrain library provides parameters to enable or dis-
able the control of the active differentials.  When 
disabled the driveline behaves as a conventional, 
passive four-wheel-drive system so this model can 
easily be used to assess the benefits of active versus 
passive four-wheel-drive.   

The vehicles are tested by accelerating from rest to 
100kmh and then negotiating a tight chicane at 
100kmh whilst trying to maintain this speed.  Figure 
13 shows how the yaw rate, steering angle and longi-
tudinal speed of the two cars varies during the test.  
As a chassis model from the VehicleDynamics li-
brary is being used the behaviour of the cars during 
the test can be animated, Figure 14 shows a compari-
son of how the two cars behave. 

5 Outlook 

The first version (1.0) of the VehicleInterfaces li-
brary has been presented. Future developments and 
refinements will be based on feedback from automo-
tive library developers and users of the VehicleInter-

Figure 12: Active four-wheel drive system  
 from the PowerTrain library 

Figure 13: Comparing Active and Passive Four-
Wheel Drive.  Yaw-rate (top), Longitudinal ve-

locity (middle) and Steering angle (bottom). 

40

M. Dempsey, M. Gäfvert, P. Harman, C. Kral, M. Otter, P. Treffinger 

The Modelica Association  Modelica 2006, September 4th – 5th 

 



faces library. Currently only a small set of standard-
ised signals have been defined on the control bus and 
it is likely that this will need to be extended signifi-
cantly to meet the needs of users.  
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has active four-wheel drive and the red 

car has passive four-wheel drive. 
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