
Coordinated automotive libraries for vehicle system modelling

Mike Dempsey1, Magnus Gäfvert2, Peter Harman3,
Christian Kral4, Martin Otter5, Peter Treffinger6

1 Claytex Services Limited, Hatton, UK
2 Modelon AB, Lund, Sweden

3 Ricardo UK Limited, Leamington Spa, UK

4 arsenal research, Vienna, Austria
5 DLR, Oberpfaffenhofen, Germany

6 DLR, Stuttgart, Germany
vi@claytex.com

Abstract

A new free Modelica library, called VehicleInter-
faces, has been developed to promote compatibility
between Modelica automotive libraries. The library
provides standard system interface definitions that
enable the whole vehicle system to be conveniently
modelled. Example vehicle models are also pro-
vided to illustrate the use of the interface definitions.
Practical applications and examples of how these
interface definitions can be used are presented.

1 Motivation

A number of Modelica library developers are work-
ing independently on automotive libraries focused on
different vehicle systems such as PowerTrain [1],
Transmission [2], VehicleDynamics [3] and Smar-
tElectricDrives [4]. For many simulation activities it
is desirable to be able to create whole system models
[5] that combine elements from the different libraries

and provide easy ways to integrate user-developed
models.

This work is based on previous work carried out by
the authors and also builds on the work done on the
Modelica Vehicle Model Architecture published by
Tiller et. al.[6].

The approach adopted in developing this library has
been to focus on standardising the subsystem inter-
faces rather than developing a standard vehicle
model architecture. Several different example archi-
tectures based on these interfaces are provided as
examples in the VehicleInterfaces library. A typical
example is shown in Figure 1 where all the main
subsystems (driver, driverEnvironment, engine,
transmission, driveline, chassis, brakes, accessories,
road, atmosphere, etc.) are included at the top level
of the model. In this example it is assumed that the
controllers for the respective subsystems are part of
the subsystem model. In other architectures, the con-
trollers might be on the same level as the subsys-
tems.

All subsystem models in the architecture are de-

Figure 1: Example vehicle model using VehicleInterfaces shown in Dymola 6.0b

33

Coordinated Automotive Libraries for Vehicle System Modelling

The Modelica Association Modelica 2006, September 4th – 5th

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/11128468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

clared as “replaceable”. When instanting an archic-
tecture model, the desired subsystem model can be
selected via a redeclaration. In Dymola there are two
ways to redeclare components using the graphical
user interface as shown in Figure 2.

The dialog box shown at the top of Figure 2 is ac-
cessed through the model browser by right-clicking
on the base class being extended. The scroll down
menus show the available subsystem models that can
be selected. As usual, these menus are automatically
constructed via the annotation “choicesAllMatching
= true” (all model components are shown that are
loaded into the Modelica simulation environment
and are derived by inheritance from the respective
superclass).

In Dymola 6 redeclarations can be made by right
clicking on a replaceable subsystem, the context
menu then allows the user to select an option from
the list of matching types. The list is determined

using the same annotation as the dialog box method.

2 Interface Definitions

The subsystem decomposition used within the Vehi-
cleInterfaces package follows the same basic struc-
ture as used in the Modelica VMA developed by
Tiller et al [6]. In the following sections we will dis-
cuss the subsystems and modelling methods intro-
duced with the VehicleInterfaces package.

2.1 Conditional Connectors

The VehicleInterfaces package makes extensive use
of conditional connectors so that a single subsystem
interface definition can be used for a wide range of
applications. A conditional component, such as a
connector, is one that is only instantiated in the
model if the corresponding Boolean condition is true.
The Modelica code for an example conditional com-
ponent is shown in Figure 3. In this example the
component shaft is only instantiated in the model if
the user sets the parameter includeInertia=true, if
the parameter is false then the component and all
related connections are completely removed from the
model.

If we consider the engine subsystem, this includes
conditional connectors for the engineMount and ac-
celeratorPedal connections. The engineMount con-
nector models the physical connection between the
engine block and the engine mounting system as a
MultiBody connection. This is not always required,
for example when modelling the engine as a simple
1D system. Similarly the acceleratorPedal, which is
a 1D translational connector provides a physical
connection between the engine subsystem and the
driver environment, which isn’t required in a drive-
by-wire vehicle.

By using conditional connectors these components
are completely eliminated from a model when they
are not required. If they were not eliminated it
would be necessary to add additional components to
ensure that all the flow variables within the connec-
tors were being properly defined. This would add
additional overhead to the simulation task and should

Figure 2: Two methods for the redeclaration

of subsystem models in Dymola 6

model Example
 parameter Boolean includeInertia=false;
 Rotational.Inertia shaft if includeInertia;
 ...
end Example;

Figure 3: Example of a conditionally instantiated
Inertia component.

34

M. Dempsey, M. Gäfvert, P. Harman, C. Kral, M. Otter, P. Treffinger

The Modelica Association Modelica 2006, September 4th – 5th

be avoided whenever possible.

Conditional connectors are used wherever a connec-
tor might not be needed in every application. These
include all MultiBody connectors and all the physi-
cal connections between the driver environment and
the subsystem models.

2.2 Modelling Rotating Components

Within VehicleInterfaces rather than limiting our-
selves to modelling rotating components as a simple
1D rotation we have built in the flexibility to model
rotating components as MultiBody systems. This
has been possible through the development of a new
connector called FlangeWithBearing. This is a hier-
archical connector that contains a 1D rotational con-
nector and a conditional MultiBody connector. The
use of the MultiBody connector is controlled by a
parameter in the connector. This enables the
FlangeWithBearing connector to model rotational
effects as a purely 1D system or it can correctly in-
clude MultiBody effects. The Modelica definition of
this new connector is shown in Figure 4 and the
connector is now available within the Multi-
Body.Interfaces package of the Modelica Standard
Library 2.2.1.

Where this connector is used in an interface defini-
tion the parameter includeBearingConnector is
linked to a parameter at the model level so that the
model developer can easily activate this connector if
required. An example of how this is used is shown
in Figure 5 where the driveline interface definitions
for a 2-axle vehicle are shown. In the Base class we
can see that three Boolean parameters are declared
as protected parameters. This means they are only
available to the model developer as they create the
subsystem model and cannot be changed when the
model is used.

The use of the bearing connectors needs to carefully
considered to avoid inadvertently creating mechani-
cal loops in the model. The following example
guidelines for the engine and transmission subsys-
tems should help highlight the issues so that the

model developer can determine when it is appropri-
ate to use the bearing connectors. For the engine and
transmission subsystem models:

1. When they are modelled as a pure 1D rotational
system then no bearing connectors are required.

2. When they are modelled as a 1D rotational sys-
tem with reactions on to a MultiBody system
then no bearing connectors are required

3. When they are being modelled as a MultiBody
system but they are rigidly connected together
then the bearing frame between the engine and
transmission should not be included. In this case
the transmissionMount connector should support
the MultiBody elements of the transmission.
The rest of the model then needs to be consid-
ered before deciding whether to include the bear-
ing between the transmission and driveline or be-
tween the engine and accessories subsystems.

4. When they are being modelled as a MultiBody
system but they are not rigidly connected to-

model Base
 MultiBody.Interfaces.FlangeWithBearing
 TransmissionFlange(
 final includeBearingConnector=
 includeTransmissionBearing);
 VehicleInterfaces.Interfaces.ControlBus
 ControlBus
 MultiBody.Interfaces.Frame_a drivelineMount
 if includeMount;
protected
 parameter Boolean
 includeWheelBearings=false;
 parameter Boolean includeMount=false;
 parameter Boolean
 includeTransmissionBearing=false;
end Base;

model TwoAxleBase
 extends Base;
 MultiBody.Interfaces.FlangeWithBearing
 WheelHub_1(
 final includeBearingConnector=
 includeWheelBearings);
 MultiBody.Interfaces.FlangeWithBearing
 WheelHub_2(
 final includeBearingConnector=
 includeWheelBearings);
 MultiBody.Interfaces.FlangeWithBearing
 WheelHub_3(
 final includeBearingConnector=
 includeWheelBearings);
 MultiBody.Interfaces.FlangeWithBearing
 WheelHub_4(
 final includeBearingConnector=
 includeWheelBearings);
end TwoAxleBase;

Figure 5: Modelica code for the
driveline interface definition

connector FlangeWithBearing
 parameter Boolean
 includeBearingConnector=false;
 Rotational.Interfaces.Flange_a flange;
 MultiBody.Interfaces.Frame bearingFrame
 if IncludeBearingConnector;
end FlangeWithBearing;

Figure 4: Modelica code and icon for

the FlangeWithBearing connector

35

Coordinated Automotive Libraries for Vehicle System Modelling

The Modelica Association Modelica 2006, September 4th – 5th

gether then the bearing frame between the engine
and transmission will be required to support the
intermediate drive shaft.

2.3 Driver and Driver Environment Subsys-
tems

The driver and the physical interaction between
driver and vehicle can be modelled as separate sub-
systems or combined as a single subsystem within
the VehicleInterfaces package. The decision is down
to the model developers and will influence the extent
to which models are reusable in other applications.
The physical interactions, such as steering and throt-
tle controls and feedback signals, are referred to as
the driver environment within VehicleInterfaces.

When the driver and driver environment are mod-
elled as separate subsystems the driver environment
model is responsible for converting the normalised
instructions passed from the driver model in to the
correct values for this particular vehicle model. For
example, a driver model should demand normalised
steering wheel angles between –1 and 1 and this
should be translated by the driver environment sub-
system in to the appropriate steering wheel angle for
the current vehicle. This enables the driver model to
be defined in a generic way for use on many differ-
ent vehicles.

The interaction between the driver and driver envi-
ronment subsystem is modelled using an expandable
connector known as the driver interaction bus. The
connections passed across this bus are a combination
of signal values and normalised physical connec-
tions. A normalised physical connection contains
both the normalised position and the actual force or
torque being applied across the connection. The
naming and types for the signals that are exchanged
between these two subsystems is defined within the
VehicleInterfaces package to ensure compatibility
between driver models and driver environment mod-
els from different libraries.

When only the driver environment subsystem is pre-
sent this should also include the driver model and it
is the responsibility of the individual model develop-
ers to provide a logical separation between the envi-
ronment and driver models.

2.4 Powerplant Mounts Subsystem

Unlike in the Modelica VMA the Powertrain mount-
ing systems are modelled as separate subsystems
when they are required in a model. In Figure 1 we
see that there are two separate mounting systems,
one for supporting the engine and transmission and

another that supports the differential. The modelling
of the mounting systems in this way reflects the
physical reality of a rear-wheel drive vehicle in
which the engine and transmission are rigidly con-
nected together and mounted as one system at the
front of the vehicle and the differential in the rear
axle is independently mounted. Vehicles with dif-
ferent driveline configurations would require a dif-
ferent arrangement for the mounting systems.

The mounting subsystems are all defined by extend-
ing a base class that includes a MultiBody connector
that should be connected to the vehicle body. There
are 3 mounting subsystem templates provided within
the VehicleInterfaces package that can be used to
support differing numbers of powertrain subsystems.
The connections to the powertrain subsystems are
modelled using MultiBody connectors.

When the mounting systems are not being modelled
these subsystems can be removed from the model
architecture to simplify the vehicle model.

2.5 Road Subsystem

The road subsystem is used to define the road sur-
face and supports varying friction coefficients, cur-
vature, gradients and banking. The road is defined
as a series of replaceable functions that are used to
determine the position along the road, the normal to
the road surface, the current heading of the road cen-
tre line and the friction coefficient. By redeclaration
of these functions a wide range of road models from
a straight flat road through to a curved undulating
road can be created.

When a road is used at the top level of a model it
should be declared with the prefix inner so that it can
be referenced from any subsystem or component
within the model that needs to determine information
about the road surface. When a subsystem needs to
refer to the road subsystem it should contain an outer
version of the road subsystem and this will then en-
able it to access the road definition from the top-
level of the model.

2.6 Atmosphere Subsystem

The atmosphere subsystem defines the ambient con-
ditions including temperature, pressure, humidity,
wind speed and direction. The atmosphere is defined
as a series of replaceable functions that determine
these conditions at a specified point in space. This
enables the ambient conditions to vary with the vehi-
cle position so effects such as wind can be varied as
the vehicle drives along a track.

36

M. Dempsey, M. Gäfvert, P. Harman, C. Kral, M. Otter, P. Treffinger

The Modelica Association Modelica 2006, September 4th – 5th

2.7 Example Vehicle Architectures

Using these interface definitions we can create a va-
riety of vehicle model architectures to suit different
applications. Figure 1 shows an example architec-
ture for a rear-wheel drive automatic transmission
passenger car that includes a separate driver model
and powertrain mounting systems. Figure 6 shows
some other possible model architectures including
(from top to bottom) a manual transmission vehicle;
an alternative layout for an automatic transmission
vehicle; a power-split hybrid vehicle model. In all
these cases it is possible to re-use the same subsys-
tem models because the interface definitions are con-
sistent even though the top-level model appears very
different.

3 Control Bus Structure

3.1 Overview

Within the VehicleInterfaces library every subsystem
that forms part of the vehicle model has a connection
to the control bus. The control bus is used to pass
information between the subsystems that would
normally be passed along the CAN bus or similar
vehicle communication network. The VehicleInter-
faces control bus does not model how the vehicle
network communication actually works but instead
provides a structure by which the same information
can be exchanged between the various subsystems.

The control bus is modelled using a series of hierar-
chical expandable connectors, which means that the
user can place any signal they need on to the control
bus. As part of the VehicleInterfaces library a mini-
mum set of signals and a structure for the control bus
is recommended so that systems that follow these
recommendations can easily be coupled together.

A hierarchical structure to the control bus is pro-
posed where the subsystem name is used to help
structure the signals on the bus. For example signals
placed on to the control bus from the chassis subsys-
tem should be placed within the chassisBus structure
of the controlBus, see Figure 7 for an illustration of
the current minimum set of signals for the control
bus. A full naming convention is included with the
VehicleInterfaces package.

3.2 Working with the Control Bus

Every subsystem within the VehicleInterfaces pack-
age contains a controlBus connector that will allow
the subsystem access to the complete control bus

structure. To access a signal within the control bus
hierarchy it is first necessary to add the appropriate
sub-bus connector to the model as a node, i.e. a pro-
tected connector. Signals within this part of the con-
trol hierarchy can then be accessed by connecting to
the sub-bus connector. Figure 8 shows how the lon-
gitudinal velocity signal within the chassisBus sub-
bus on the vehicle controlBus can be accessed. The
Modelica code for this example is also shown. This
methodology is necessary due to the way the Mode-
lica language specification defines expandable con-
nectors [7].

Figure 6: Example model architectures

37

Coordinated Automotive Libraries for Vehicle System Modelling

The Modelica Association Modelica 2006, September 4th – 5th

3.3 The Sub-bus Connectors

The sub-bus connectors are defined within the Vehi-
cleInterfaces.Interfaces package and are all defined
as expandable connectors. As such the connectors
don’t contain any signal names and yet we would
like it to be possible to generate a list of pre-defined
names to make it easier for the user to connect to the
control bus and access the appropriate signal.

To enable this to happen, within the VehicleInter-
faces package each expandable connector has been
extended and the standard signals have been defined
within these extended connectors. These connectors
are not intended for use directly within a model but
are necessary to enable a Modelica tool to generate a
list of possible signal names. Within Dymola, when
a connection to an expandable connector is made a
dialog box is generated with a list of signal names.
The list of signal names is now determined by
searching through the open libraries to find connec-
tors that extend from the type of expandable connec-
tor used in the current connection. All the signals
that are defined within the connectors that extend
from the base connector are then added to the list and
the user can select the appropriate one.

This functionality means that the user can easily
connect to one of the standard signal names but also
means that it is not absolutely necessary for them to
assign values to every signal that is defined as part of
the standard VehicleInterfaces control bus. It also
allows different library developers to extend the con-

trol signal bus in appropriate ways for their library
and to have the names automatically appear in mod-
els.

4 Usage Examples

Three different usage examples are presented to il-
lustrate different ways that the interface templates
can be used to model vehicles with different levels of
detail. The first two examples illustrate two different
approaches to modelling a rear-wheel drive driveline
and the third example illustrates how the different
commercial model libraries that are adopting these
interface definitions can be coupled together.

4.1 Rear-Wheel-Drive Vehicle as a 1D System

The simplest way to model a vehicle powertrain is as
a 1D rotational system. This approach does have
many uses, such as fuel economy studies, and this
example illustrates how the interface templates can
be used in this way. Figure 9 shows the driveline
model diagram for a rear-wheel drive vehicle mod-
elled as a purely 1D rotational system. Components
in this model are taken from the Modelica Standard
Library and the PowerTrain library.

In this example the parameters that control the condi-
tional connectors for the driveline interface class are
all left with their default values of false. This means

Figure 7: Current minimum set of

signals in the control bus

model controlBusDemo
 extends TwoAxleBase;
protected
 VehicleInterfaces.Interfaces.ChassisBus
 chassisBus;
public
 Modelica.Blocks.Math.Gain gain;
equation
 connect(controlBus.chassisBus,

 chassisBus);
 connect(gain.u,
 chassisBus.longitudinalVelocity);
end controlBusDemo;

Figure 8: Accessing signals on the control
bus (model diagram in Dymola)

38

M. Dempsey, M. Gäfvert, P. Harman, C. Kral, M. Otter, P. Treffinger

The Modelica Association Modelica 2006, September 4th – 5th

that the bearing frame connectors within the
FlangeWithBearing connectors (transmissionFlange,
wheelHub_1, etc.) are not instantiated in the model
and neither is the drivelineMount connector. This
leaves us with a simple model using just the 1D rota-
tional connectors for the transmission and wheel
hubs.

When modelling a 1D rotational system it is some-
times necessary to include the reactions of the 1D
rotational system on a MultiBody system [8].
Adapting the rear-wheel-drive model to include Mul-
tiBody effects would lead to the diagram in Figure
10. To enable this model to be built the driveline-
Mount connector needs to be enabled so that the
MultiBody reactions can be transmitted in to the ve-
hicle body. The bearing frame connectors within the
transmissionFlange and wheelHub connectors are
not required in this model as the driveline is not be-
ing modelled as a MultiBody system.

4.2 Rear-Wheel-Drive Vehicle as a MultiBody
System

The same driveline interface template can be used to
model the complete driveline as a MultiBody system.
In this case the use of the bearing connectors within
the FlangeWithBearing connectors needs to be
thought about carefully in order to make sure me-
chanical loops aren’t inadvertently created. Consid-
eration needs to be given to the way in which the
MultiBody components are being supported both in
the physical system and in the model itself.

In the case of a rear-wheel drive vehicle the prop-
shaft is supported by the transmission and the differ-
ential. So in this case the bearing frame in the
transmissionFlange needs to be included so that this
end of the propshaft is correctly supported. The dif-
ferential is also being modelled as a MultiBody sys-
tem so this will support the other end of the prop-
shaft. The differential itself is typically supported by
an elastic mounting system that would be connected

Figure 10: 1D Rotational model of a rear-wheel
drive driveline with reactions on to a MultiBody

system

Figure 9: Simple 1D Rotational model
of a rear-wheel drive driveline

Figure 11: MultiBody model of
a rear-wheel drive driveline

39

Coordinated Automotive Libraries for Vehicle System Modelling

The Modelica Association Modelica 2006, September 4th – 5th

to the driveline model via the drivelineMount con-
nector.

Finally it needs to be considered how the halfshafts
are supported, one end is attached to the differential
and supported by the output bearings of the differen-
tial, the other end is attached to the wheel hub and
supported by the wheel bearing. This means the
bearing frames in the wheel hub connectors need to
be included. An example of how this subsystem
might look is shown in Figure 11.

4.3 Active 4WD Vehicle Model

By combining models from the PowerTrain and Ve-
hicleDynamics libraries it is possible to study the
handling benefits of active four-wheel-drive systems
and compare this to the handling of the same vehicle
with a conventional, passive four-wheel drive sys-
tem.

The vehicle model is created using various subsys-
tem models from the PowerTrain library and the Ve-
hicleDynamics library. The PowerTrain library con-
tains an active four-wheel drive system model shown
in Figure 12. The driveline is modelled as a 1D rota-
tional system and includes the reactions on to the
vehicle body. To make this 1D driveline model
compatible with a MultiBody chassis model from the
VehicleDynamics library we need to activate the flag
usingMultiBodyChassis in the “Advanced” menu of
the driveline component parameter dialog. When this

parameter is set to true the bearing connectors within
the wheelHub connectors are included and zero
forces and torques are applied to these bearing con-
nectors.

The driveline control system model within the Pow-
erTrain library provides parameters to enable or dis-
able the control of the active differentials. When
disabled the driveline behaves as a conventional,
passive four-wheel-drive system so this model can
easily be used to assess the benefits of active versus
passive four-wheel-drive.

The vehicles are tested by accelerating from rest to
100kmh and then negotiating a tight chicane at
100kmh whilst trying to maintain this speed. Figure
13 shows how the yaw rate, steering angle and longi-
tudinal speed of the two cars varies during the test.
As a chassis model from the VehicleDynamics li-
brary is being used the behaviour of the cars during
the test can be animated, Figure 14 shows a compari-
son of how the two cars behave.

5 Outlook

The first version (1.0) of the VehicleInterfaces li-
brary has been presented. Future developments and
refinements will be based on feedback from automo-
tive library developers and users of the VehicleInter-

Figure 12: Active four-wheel drive system
 from the PowerTrain library

Figure 13: Comparing Active and Passive Four-
Wheel Drive. Yaw-rate (top), Longitudinal ve-

locity (middle) and Steering angle (bottom).

40

M. Dempsey, M. Gäfvert, P. Harman, C. Kral, M. Otter, P. Treffinger

The Modelica Association Modelica 2006, September 4th – 5th

faces library. Currently only a small set of standard-
ised signals have been defined on the control bus and
it is likely that this will need to be extended signifi-
cantly to meet the needs of users.

6 Acknowledgements

A number of automotive library developers and con-
sultants have co-operated to develop this release of
the VehicleInterfaces Library. The developers can all
be contacted by emailing vi@claytex.com. In addi-
tion to the authors of this paper the following people
have also contributed:

Arsenal Research: Franz Pirker, Anton Haumer,

DLR Oberpfaffenhofen: Christian Schweiger, Jakub
Tobolar.

DLR Stuttgart: Marcus Baur, Jörg Ungethüm

Modelon AB: Johan Andreasson

Ricardo UK Ltd: Mark Ingram

This library has been developed from work on the
original Modelica VMA [6] developed by Michael
Tiller et al. Additional ideas from intermediate work
by members of DLR Oberpfaffenhofen and Modelon
has also been incorporated.

Hilding Elmqvist from Dynasim AB is responsible
for bringing this group of developers together with
the objective of developing a standard automotive
model architecture. Dynasim have funded much of
the development of this library.

References

[1] Schweiger C., Dempsey M., Otter M.: The Power-
Train Library: New Concepts and New Fields of Ap-
plications. Proceedings of Modelica 2005 Confer-
ence. http://www.modelica.org/events/Confer-
ence2005/online_proceedings/Session6/Ses-
sion6a1.pdf

[2] Brandao F., Harman P.: An Integrated Simulation
Approach: Ricardo Transmission and Driveline Dy-
namic Simulation Library. IMechE Integrated Power-
train and Driveline Systems 2006

[3] Andreasson J., Gäfvert M.: Vehicle Dynamics Li-
brary. Proceedings of Modelica 2006 Conference.

[4] Giuliani H., Kral C., Gragger J.V, Pirker F.;. Mode-
lica Simulation of Electric Drives for Vehicular Ap-
plications – The Smart Drives Library. ASIM con-
ference, 2005

[5] Alexander T., Liu C.S., Monkaba V.: Multi-Body
Dynamic Modeling Methods and Applications for
Driveline Systems. SAE 2002-01-1195

[6] Tiller M., Bowles P., Dempsey M.: Development of a
Vehicle Modeling Architecture in Modelica. Proceed-
ings of the Modelica 2003 Conference.
http://www.modelica.org/events/Conference2003/pap
ers/h32_vehicle_Tiller.pdf

[7] Modelica: Language Specification 2.2. Feb. 2005.
Section 3.3.8, pp. 54 – 59 (expandable connectors).
http://www.modelica.org/documents/ModelicaSpec2
2.pdf

[8] Schweiger C., Otter M.: Modelling 3D Mechanical
Effects of 1D Powertrains. Proceedings of Modelica
2003 Conference,Nov. 2003.
http://www.modelica.org/events/Conference2003/pap
ers/h06_Schweiger_powertrains_v5.pdf

Figure 14: Visualising the behaviour of
the two cars in Dymola. The green car
has active four-wheel drive and the red

car has passive four-wheel drive.

41

Coordinated Automotive Libraries for Vehicle System Modelling

The Modelica Association Modelica 2006, September 4th – 5th

