738 research outputs found

    Are constant loop widths an artifact of the background and the spatial resolution?

    Get PDF
    We study the effect of the coronal background in the determination of the diameter of EUV loops, and we analyze the suitability of the procedure followed in a previous paper (L\'opez Fuentes, Klimchuk & D\'emoulin 2006) for characterizing their expansion properties. For the analysis we create different synthetic loops and we place them on real backgrounds from data obtained with the Transition Region and Coronal Explorer (\textit{TRACE}). We apply to these loops the same procedure followed in our previous works, and we compare the results with real loop observations. We demonstrate that the procedure allows us to distinguish constant width loops from loops that expand appreciably with height, as predicted by simple force-free field models. This holds even for loops near the resolution limit. The procedure can easily determine when loops are below resolution limit and therefore not reliably measured. We find that small-scale variations in the measured loop width are likely due to imperfections in the background subtraction. The greatest errors occur in especially narrow loops and in places where the background is especially bright relative to the loop. We stress, however, that these effects do not impact the ability to measure large-scale variations. The result that observed loops do not expand systematically with height is robust.Comment: Accepted for publication in Ap

    Constraints on filament models deduced from dynamical analysis

    Get PDF
    The conclusions deduced from simultaneous observations with the Ultra-Violet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission satellite, and the Multichannel Subtractive Double Pass (MSPD) spectrographs at Meudon and Pic du Midi observatories are presented. The observations were obtained in 1980 and 1984. All instruments have almost the same field of view and provide intensity and velocity maps at two temperatures. The resolution is approx. 0.5 to 1.5" for H alpha line and 3" for C IV. The high resolution and simultaneity of the two types of observations allows a more accurate description of the flows in prominences as functions of temperature and position. The results put some contraints on the models and show that dynamical aspects must be taken into account

    Plasma composition in a sigmoidal anemone active region

    Get PDF
    Using spectra obtained by the EIS instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359 arcsec x 485 arcsec. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the AR age, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configfiuration.Comment: For on-line animation, see http://www.mssl.ucl.ac.uk/~db2/fip_intensity.gif. Accepted by Ap

    Final Report: Theory of Advanced High Efficiency Concentrator Cells

    Get PDF
    The goal of this project was to begin -developing accurate, and ultimately predictive, device models for III-V concentrator cells. The project consisted of extending a one-dimensional numerical device model previously developed at Purdue to III-V solar cells. We also began verifying the accuracy of the code by comparing computed and measured solar cell characteristics. Gallium arsenide was selected because it is the most mature III-V technology and because GaAs solar cells have demonstrated high conversion efficiency [l,2,3]. The present device model should be useful in optimizing GaAs solar cells and forms a foundation that can be extended to other III-V homo- and heterostructure solar cells. The numerical device model developed in this work solves Poisson’s equation simultaneously with the electron and hole continuity equations without making common assumptions such as low-level injection, piece-wise uniform doping, neglect of space-charge recombination, etc. Materials models for GaAs solar cells (e. g. intrinsic carrier concentration, carrier mobilities, lifetimes, optical absorption and reflection coefficients, etc.) were compiled, evaluated, and in some cases extended. These materials models were then implemented into the numerical device model. The device model was also extended to analyze optical absorption and reflection from bare and anti-reflection (AR) coated cells. To test the GaAs cell model, we compared its predictions to measured results for an N+P cell (the shallow homojunction cell reported by Fan and co-workers) and a P+N cell (fabricated by Borrego and co-workers). In general, good agreement between theory and experiment was obtained for both concentrated and unconcentrated conditions. Although detailed comparisons of the model’s predictions with measured results continue, the present model is a useful tool for GaAs cell design and optimization

    French translation and validation of the Jefferson Scale of Empathy - Health Professions Student version

    Get PDF
    Background: Background: Jefferson Scale of Empathy is one of the most widely used tools worldwide to assess empathy. The extended version for Health Professions Students (JSE HPS) has not yet been translated into French. Objective: The aim of our study was to translate the JSE HPS into French and assess the psychometric properties of this new version (JSE HPS Fr). Methods: The JSE HPS was translated according to international recommendations. The main psychometric qualities (test-retest reliability, internal consistency, floor and ceiling effects and construct validity) were studied in a sample of physiotherapy students. Participants provided general information (age, gender, year of study) and completed the JSE HPS Fr and the Questionnaire of Cognitive and Affective Empathy (QCAE). Participants were also asked to complete the JSE-HPS-Fr again one week later to assess its test-retest reliability. Results: 408 students (161 males and 247 females; mean age: 21.3 years) participated. The JSE HPS Fr demonstrated good test-retest reliability for the total score (ICC=0.81) and good internal consistency (α Cronbach: 0.79). The JSE HPS also showed good convergent validity with the QCAE questionnaire (r=0.41, p<0.05). No floor or ceiling effects were observed. Conclusions: The results indicate that the JSE HPS Fr is a valid and reliable tool to assess the level of empathy of French-speaking physiotherapy students

    The Magnetic Topology of Coronal Mass Ejection sources

    Get PDF
    In an attempt to test current initiation models of coronal mass ejections (CMEs), with an emphasis on the magnetic breakout model, we inspect the magnetic topology of the sources of 26 CME events in the context of their chromospheric and coronal response in an interval of approximately nine hours around the eruption onset. First, we perform current-free (potential) extrapolations of photospheric magnetograms to retrieve the key topological ingredients, such as coronal magnetic null points. Then we compare the reconnection signatures observed in the high cadence and high spatial resolution of the Transition Region And Coronal Explorer (TRACE) images with the location of the relevant topological features. The comparison reveals that only seven events can be interpreted in terms of the breakout model, which requires a multi-polar topology with pre-eruption reconnection at a coronal null. We find, however, that a larger number of events (twelve) can not be interpreted in those terms. No magnetic null is found in six of them. Seven other cases remain difficult to interpret. We also show that there are no systematic differences between the CME speed and flare energies of events under different interpretations.Comment: Accepted for publication in Ap

    Coronal magnetic reconnection driven by CME expansion -- the 2011 June 7 event

    Get PDF
    Coronal mass ejections (CMEs) erupt and expand in a magnetically structured solar corona. Various indirect observational pieces of evidence have shown that the magnetic field of CMEs reconnects with surrounding magnetic fields, forming, e.g., dimming regions distant from the CME source regions. Analyzing Solar Dynamics Observatory (SDO) observations of the eruption from AR 11226 on 2011 June 7, we present the first direct evidence of coronal magnetic reconnection between the fields of two adjacent ARs during a CME. The observations are presented jointly with a data-constrained numerical simulation, demonstrating the formation/intensification of current sheets along a hyperbolic flux tube (HFT) at the interface between the CME and the neighbouring AR 11227. Reconnection resulted in the formation of new magnetic connections between the erupting magnetic structure from AR 11226 and the neighboring active region AR 11227 about 200 Mm from the eruption site. The onset of reconnection first becomes apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, is re-directed towards remote areas in AR 11227, tracing the change of large-scale magnetic connectivity. The location of the coronal reconnection region becomes bright and directly observable at SDO/AIA wavelengths, owing to the presence of down-flowing cool, dense (10^{10} cm^{-3}) filament plasma in its vicinity. The high-density plasma around the reconnection region is heated to coronal temperatures, presumably by slow-mode shocks and Coulomb collisions. These results provide the first direct observational evidence that CMEs reconnect with surrounding magnetic structures, leading to a large-scale re-configuration of the coronal magnetic field.Comment: 12 pages, 12 figure

    The Magnetic Environment of a Stealth Coronal Mass Ejection

    Get PDF
    Interest in stealth coronal mass ejections (CMEs) is increasing due to their relatively high occurrence rate and space weather impact. However, typical CME signatures such as extreme-ultraviolet dimmings and post-eruptive arcades are hard to identify and require extensive image processing techniques. These weak observational signatures mean that little is currently understood about the physics of these events. We present an extensive study of the magnetic field configuration in which the stealth CME of 2011 March 3 occurred. Three distinct episodes of flare ribbon formation are observed in the stealth CME source active region (AR). Two occurred prior to the eruption and suggest the occurrence of magnetic reconnection that builds the structure that will become eruptive. The third occurs in a time close to the eruption of a cavity that is observed in STEREO-B 171 Å data; this subsequently becomes part of the propagating CME observed in coronagraph data. We use both local (Cartesian) and global (spherical) models of the coronal magnetic field, which are complemented and verified by the observational analysis. We find evidence of a coronal null point, with field lines computed from its neighborhood connecting the stealth CME source region to two ARs in the northern hemisphere. We conclude that reconnection at the null point aids the eruption of the stealth CME by removing the field that acted to stabilize the preeruptive structure. This stealth CME, despite its weak signatures, has the main characteristics of other CMEs, and its eruption is driven by similar mechanisms

    Bright Points and Subflares in UV Lines and in X-Rays

    Get PDF
    We have analysed an active region which was observed in Halpha (MSDP), UV lines (SMM/UVSP), and in X rays (SMM/HXIS). In this active region there were only a few subflares and many small bright points visible in UV and in X rays. Using an extrapolation based on the Fourier transform we have computed magnetic field lines connecting different photospheric magnetic polarities from ground-based magnetograms. Along the magnetic inversion lines we find 2 different zones: 1. a high shear region (less than 70 degrees) where subflares occur 2. a low shear region along the magnetic inversion line where UV bright points are observed
    corecore