152 research outputs found

    Design of Methane Drainage Systems to Reduce Mine Ventilation Requirements

    Get PDF
    There are numerous proven methods to drain methane from coal seams in coal mines. These systems include vertical wells drilled ahead of mining, horizontal boreholes, gob wells, and others. However, these drainage systems are not typically applied properly to optimize gas recovery and minimize the cost of ventilation to the mine. This lack of optimization generally occurs due to the large up-front costs associated with the drainage systems and the lack of knowledge regarding the drainage technology. This results in the mine having a reactive response to methane drainage issues as opposed to a pro-active plan for handling methane drainage. This paper demonstrates the use of a coal bed methane reservoir simulator to design vertical well methane drainage systems ahead of active longwall mining. Using the reservoir simulator and a hypothetical mine, the degasification system is optimized with respect to I) the cost/benefit of the vertical well program, 2) the impact on the mining operation and mine ventilation, and 3) the reduction in coal seam gas content in the mined seams

    Thermal Conductivity of Polyimide/Nanofiller Blends

    Get PDF
    In efforts to improve the thermal conductivity of Ultem(TM) 1000, it was compounded with three carbon based nano-fillers. Multiwalled carbon nanotubes (MWCNT), vapor grown carbon nanofibers (CNF) and expanded graphite (EG) were investigated. Ribbons were extruded to form samples in which the nano-fillers were aligned. Samples were also fabricated by compression molding in which the nano-fillers were randomly oriented. The thermal properties were evaluated by DSC and TGA, and the mechanical properties of the aligned samples were determined by tensile testing. The degree of dispersion and alignment of the nanoparticles were investigated with high-resolution scanning electron microscopy. The thermal conductivity of the samples was measured in both the direction of alignment as well as perpendicular to that direction using the Nanoflash technique. The results of this study will be presented

    Thermal Conductivity of Ultem(TradeMark)/Carbon Nanofiller Blends

    Get PDF
    In an effort to improve polymer thermal conductivity (TC), Ultem(TradeMark) 1000 was compounded with nano-fillers of carbon allotropes. Ultem(TradeMark) 1000 was selected since it is both solution and melt processable. As-received and modified multiwalled carbon nanotubes (MWCNTs), vapor grown carbon nanofibers (CNF) and expanded graphite (EG) were investigated. MWCNTs were modified by functionalizing the surface through oxidization with concentrated acids, mixing with an alkyl bromide, and addition of alkyl and phosphorus compounds after initial treatment with n-butyl lithium. Functionalization was performed to improve the TC compatibility between the resin and MWCNTs. It was postulated that this may provide an improved interface between the MWCNT and the polymer which would result in enhanced TC. The nano-fillers were mixed with Ultem(TradeMark) 1000 in the melt and in solution at concentrations ranging from 5 to 40 wt%. Ribbons were extruded from the blends to form samples where the nano-fillers were aligned to some degree in the extrusion direction. Samples were also fabricated by compression molding resulting in random orientation of the nano-fillers. Thermal properties of the samples were evaluated by Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analyzer (TGA). Tensile properties of aligned samples were determined at room temperature. The specimens were cut from the ribbons in the extrusion direction; hence the nano-fillers are somewhat aligned in the direction of stress. Typically it was observed that melt mixed samples exhibited superior mechanical properties compared to solution mixed samples. As expected, increased filler loading led to increased modulus and decreased elongation with respect to the neat polymer. The degree of dispersion and alignment of the nano-fillers was determined by high-resolution scanning electron microscopy (HRSEM). HRSEM of the ribbons revealed that the MWCNTs and CNFs were predominantly aligned in the flow direction. The TC of the samples was measured using a Nanoflash(TradeMark) instrument. Since the MWCNTs and CNF are anisotropic, the TC was expected to be different in the longitudinal (parallel to the nanotube and fiber axis) and transverse (perpendicular to the nanotube and fiber axis) directions. The extruded ribbons provided samples for transverse TC measurements. However, to determine the TC in the longitudinal direction, the ribbons needed to be stacked and molded under 1.7 MPa and 270 C. Samples were then obtained by cutting the molded block with a diamond saw. The largest TC improvement was achieved for aligned samples when the measurement was performed in the direction of MWCNT and CNF alignment (i.e. longitudinal axis). Unaligned samples also showed a significant improvement in TC and may be potentially useful in applications when it is not possible to align the nano-filler. The results of this study will be presented

    Preparation and Properties of Nanocomposites Prepared From Shortened, Functionalized Single-Walled Carbon Nanotubes

    Get PDF
    As part of a continuing materials development activity, low color space environmentally stable polymeric materials that possess sufficient electrical conductivity for electrostatic charge dissipation (ESD) have been investigated. One method of incorporating sufficient electrical conductivity for ESD without detrimental effects on other polymer properties of interest (i.e., optical and thermo-optical) is through the incorporation of single-walled carbon nanotubes (SWNTs). However, SWNTs are difficult to fully disperse in the polymer matrix. One means of improving dispersion is by shortening and functionalizing SWNTs. While this improves dispersion, other properties (i.e., electrical) of the SWNTs can be affected which can in turn alter the final nanocomposite properties. Additionally, functionalization of the polymer matrix can also influence nanocomposite properties obtained from shortened, functionalized SWNTs. The preparation and characterization of nanocomposites fabricated from a polyimide, both functionalized and unfunctionalized, and shortened, functionalized SWNTs will be presented

    Thermal Conductivity of Polyimide/Carbon Nanofiller Blends

    Get PDF
    In efforts to improve the thermal conductivity (TC) of Ultem(TM) 1000, it was compounded with three carbon based nano-fillers. Multiwalled carbon nanotubes (MWCNT), vapor grown carbon nanofibers (CNF) and expanded graphite (EG) were investigated. Ribbons were extruded to form samples in which the nano-fillers were aligned. Samples were also fabricated by compression molding in which the nano-fillers were randomly oriented. The thermal properties were evaluated by DSC and TGA, and the mechanical properties of the aligned samples were determined by tensile testing. The degree of dispersion and alignment of the nanoparticles were investigated with high-resolution scanning electron microscopy. The thermal conductivity of the samples was measured in both the direction of alignment as well as perpendicular to that direction using the Nanoflash technique. The results of this study will be presented

    Vinorelbine alternating oral and intravenous plus epirubicin in first-line therapy of metastatic breast cancer: results of a multicentre phase II study

    Get PDF
    The combination of intravenous (i.v.) vinorelbine and epirubicin is highly active in the treatment of metastatic breast cancer (MBC). In an effort to improve patient convenience, we investigated a regimen alternating i.v. and oral vinorelbine in combination with epirubicin as first-line chemotherapy of patients with MBC. In all, 49 patients with MBC received, as first-line treatment, a combination regimen consisting of i.v. vinorelbine 25 mg m−2 plus epirubicin 90 mg m−2 given on day 1, and oral vinorelbine 60 mg m−2 on day 8 (or day 15 if neutrophils <1500 mm−3) every 3 weeks, in an open-label, multicentre phase II study. Treatment was to be repeated for a maximum of six cycles. The study population had a median age of 55 years, half of the patients had received prior adjuvant chemotherapy and 86% presented a visceral involvement. In all, 25 responses were documented and validated by an independent panel review, yielding response rates of 51% (95% CI: 36–66) in the 49 enrolled patients and 54.5% (95% CI: 39–70) in the 44 evaluable patients. Median durations of progression-free survival and survival were 8 and 20 months, respectively. Neutropenia was the main dose-limiting toxicity, but complications were uncommon, four patients having experienced febrile neutropenia and six having developed neutropenic infection. Other frequently reported adverse events included stomatitis, nausea and vomiting, which were rarely severe. No toxic death was reported. Among patients who received six cycles, global score of quality of life remained stable. This regimen alternating oral and i.v. vinorelbine in combination with epirubicin is effective and safe. Oral vinorelbine on day 8 offers greater convenience to the patient, and decreases the need for i.v. injection and reduces time spent in hospital. Therefore, oral vinorelbine is a convenient alternative to the i.v. form in combination regimens commonly used to treat MBC

    A shape tailored gold-conductive polymer nanocomposite as a transparent electrode with extraordinary insensitivity to volatile organic compounds (VOCs)

    Get PDF
    In this study, the transparent conducting polymer of poly (3,4-ethylenendioxythiophene): poly(styrene sulphonate) (PEDOT:PSS) was nanohybridized via inclusion of gold nanofillers including nanospheres (NSs) and nanorods (NRs). Such nanocomposite thin films offer not only more optimum conductivity than the pristine polymer but also excellent resistivity against volatile organic compounds (VOCs). Interestingly, such amazing properties are achieved in the diluted regimes of the nanofillers and depend on the characteristics of the interfacial region of the polymer and nanofillers, i.e. the aspect ratio of the latter component. Accordingly, a shape dependent response is made that is more desirable in case of using the Au nanorods with a much larger aspect ratio than their nanosphere counterparts. This transparent nanocomposite thin film with an optimized conductivity and very low sensitivity to organic gases is undoubtedly a promising candidate material for the touch screen panel production industry. Considering PEDOT as a known material for integrated electrodes in energy saving applications, we believe that our strategy might be an important progress in the field.Peer reviewe

    Concomitant use of tamoxifen with radiotherapy enhances subcutaneous breast fibrosis in hypersensitive patients

    Get PDF
    Concomitant use of adjuvant tamoxifen (TAM) and radiation therapy (RT) is not widely accepted. We aim to assess whether this treatment is associated with an increased risk of developing subcutaneous fibrosis after conservative or radical surgery in breast cancer patients. We analysed 147 women with breast cancer treated with adjuvant RT, and who were included in the KFS 00539-9-1997/SKL 00778-2-1999 prospective study aimed at evaluating the predictive value of CD4 and CD8 T-lymphocyte apoptosis for the development of radiation-induced late effects. TAM (20 mg day(-1)) with concomitant RT was prescribed in 90 hormone receptor-positive patients. There was a statistically significant difference in terms of complication-relapse-free survival (CRFS) rates at 3 years, 48% (95% CI 37.2-57.6%) vs 66% (95% CI 49.9-78.6%) and complication-free survival (CFS) rates at 2 years, 51% (95% CI 40-61%) vs 80% (95% CI 67-89%) in the TAM and no-TAM groups, respectively. In each of these groups, the CRFS rates were significantly lower for patients with low levels of CD8 radiation-induced apoptosis, 20% (95% CI 10-31.9%), 66% (95% CI 51.1-77.6%), and 79% (95% CI 55-90.9%) for CD8 &lt;/=16, 16-24, and &gt;24%, respectively. Similar results were observed for the CFS rates. The concomitant use of TAM with RT is significantly associated with an increased incidence of grade 2 or greater subcutaneous fibrosis; therefore, caution is needed for radiosensitive patients
    corecore