22 research outputs found

    Ergodic Decomposition of Dirichlet Forms via Direct Integrals and Applications

    Full text link
    We study superpositions and direct integrals of quadratic and Dirichlet forms. We show that each quasi-regular Dirichlet space over a probability space admits a unique representation as a direct integral of irreducible Dirichlet spaces, quasi-regular for the same underlying topology. The same holds for each quasi-regular strongly local Dirichlet space over a metrizable Luzin, Radon measure space, and admitting carr\'e du champ operator. In this case, the representation is only projectively unique.Comment: 39 pages; added previously omitted proof

    Diffusions on Wasserstein Spaces

    Get PDF
    We construct a canonical diffusion process on the space of probability measures over a closed Riemannian manifold, with invariant measure the Dirichlet–Ferguson measure. Together with a brief survey of the relevant literature, we collect several tools from the theory of point processes and of optimal transportation. Firstly, we study the characteristic functional of Dirichlet–Ferguson measures with non-negative finite intensity measure over locally compact Polish spaces. We compute such characteristic functional as a martingale limit of confluent Lauricella hypergeometric functions of type D with diverging arity. Secondly, we study the interplay between the self-conjugate prior property of Dirichlet distributions in Bayesian non-parametrics, the dynamical symmetry algebra of said Lauricella functions and Pólya Enumeration Theory. Further, we provide a new proof of J. Sethuraman’s fixed point characterization of Dirichlet–Ferguson measures, and an understanding of the latter as an integral identity of Mecke- or Georgii–Nguyen–Zessin-type. Thirdly, we prove a Rademacher-type result on the Wasserstein space over a closed Riemannian manifold. Namely, sufficient conditions are given for a probability measure P on the Wasserstein space, so that real-valued Lipschitz functions be P-a.e. differentiable in a suitable sense. Some examples of measures satisfying such conditions are also provided. Finally, we give two constructions of a Markov diffusion process with values in the said Wasserstein space. The process is associated with the Dirichlet integral induced by the Wasserstein gradient and by the Dirichlet–Ferguson measure with intensity the Riemannian volume measure of the base manifold. We study the properties of the process, including its invariant sets, short-time asymptotics for the heat kernel, and a description by means of a stochastic partial differential equation

    Sobolev-to-Lipschitz property on QCD- spaces and applications

    Get PDF
    We prove the Sobolev-to-Lipschitz property for metric measure spaces satisfying the quasi curvature-dimension condition recently introduced in Milman (Commun Pure Appl Math, to appear). We provide several applications to properties of the corresponding heat semigroup. In particular, under the additional assumption of infinitesimal Hilbertianity, we show the Varadhan short-time asymptotics for the heat semigroup with respect to the distance, and prove the irreducibility of the heat semigroup. These results apply in particular to large classes of (ideal) sub-Riemannian manifolds

    Persistence of Rademacher-type and Sobolev-to-Lipschitz properties

    Full text link
    We consider the Rademacher- and Sobolev-to-Lipschitz-type properties for arbitrary quasi-regular strongly local Dirichlet spaces. We discuss the persistence of these properties under localization, globalization, transfer to weighted spaces, tensorization, and direct integration. As byproducts we obtain: necessary and sufficient conditions to identify a quasi-regular strongly local Dirichlet form on an extended metric topological σ\sigma-finite possibly non-Radon measure space with the Cheeger energy of the space; the tensorization of intrinsic distances; the tensorization of the Varadhan short-time asymptotics.Comment: 40 pages, 2 figure

    Multivariate Dirichlet Moments and a Polychromatic Ewens Sampling Formula

    Full text link
    We present an elementary non-recursive formula for the multivariate moments of the Dirichlet distribution on the standard simplex, in terms of the pattern inventory of the moments' exponents. We obtain analog formulas for the multivariate moments of the Dirichlet-Ferguson and Gamma measures. We further introduce a polychromatic analogue of Ewens sampling formula on colored integer partitions, discuss its relation with suitable extensions of Hoppe's urn model and of the Chinese restaurant process, and prove that it satisfies an adapted notion of consistency in the sense of Kingman.Comment: 22 page

    Complete integrability of information processing by biochemical reactions

    Get PDF
    Statistical mechanics provides an effective framework to investigate information processing in biochemical reactions. Within such framework far-reaching analogies are established among (anti-) cooperative collective behaviors in chemical kinetics, (anti-)ferromagnetic spin models in statistical mechanics and operational amplifiers/flip-flops in cybernetics. The underlying modeling -- based on spin systems -- has been proved to be accurate for a wide class of systems matching classical (e.g. Michaelis--Menten, Hill, Adair) scenarios in the infinite-size approximation. However, the current research in biochemical information processing has been focusing on systems involving a relatively small number of units, where this approximation is no longer valid. Here we show that the whole statistical mechanical description of reaction kinetics can be re-formulated via a mechanical analogy -- based on completely integrable hydrodynamic-type systems of PDEs -- which provides explicit finite-size solutions, matching recently investigated phenomena (e.g. noise-induced cooperativity, stochastic bi-stability, quorum sensing). The resulting picture, successfully tested against a broad spectrum of data, constitutes a neat rationale for a numerically effective and theoretically consistent description of collective behaviors in biochemical reactions.Comment: 24 pages, 10 figures; accepted for publication in Scientific Report

    Local Conditions for Global Convergence of Gradient Flows and Proximal Point Sequences in Metric Spaces

    Full text link
    This paper deals with local criteria for the convergence to a global minimiser for gradient flow trajectories and their discretisations. To obtain quantitative estimates on the speed of convergence, we consider variations on the classical Kurdyka--{\L}ojasiewicz inequality for a large class of parameter functions. Our assumptions are given in terms of the initial data, without any reference to an equilibrium point. The main results are convergence statements for gradient flow curves and proximal point sequences to a global minimiser, together with sharp quantitative estimates on the speed of convergence. These convergence results apply in the general setting of lower semicontinuous functionals on complete metric spaces, generalising recent results for smooth functionals on Rn\mathbb{R}^n. While the non-smooth setting covers very general spaces, it is also useful for (non)-smooth functionals on Rn\mathbb{R}^n.Comment: 22 pages, 3 figure

    Notes on stochastic (bio)-logic gates: the role of allosteric cooperativity

    Get PDF
    Recent experimental breakthroughs have finally allowed to implement in-vitro reaction kinetics (the so called {\em enzyme based logic}) which code for two-inputs logic gates and mimic the stochastic AND (and NAND) as well as the stochastic OR (and NOR). This accomplishment, together with the already-known single-input gates (performing as YES and NOT), provides a logic base and paves the way to the development of powerful biotechnological devices. The investigation of this field would enormously benefit from a self-consistent, predictive, theoretical framework. Here we formulate a complete statistical mechanical description of the Monod-Wyman-Changeaux allosteric model for both single and double ligand systems, with the purpose of exploring their practical capabilities to express logical operators and/or perform logical operations. Mixing statistical mechanics with logics, and quantitatively our findings with the available biochemical data, we successfully revise the concept of cooperativity (and anti-cooperativity) for allosteric systems, with particular emphasis on its computational capabilities, the related ranges and scaling of the involved parameters and its differences with classical cooperativity (and anti-cooperativity)
    corecore