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Recent experimental breakthroughs have finally allowed to implement in-vitro reaction kinetics (the so
called enzyme based logic) which code for two-inputs logic gates and mimic the stochastic AND (and
NAND) as well as the stochastic OR (and NOR). This accomplishment, together with the already-known
single-input gates (performing as YES and NOT), provides a logic base and paves the way to the
development of powerful biotechnological devices. However, as biochemical systems are always affected by
the presence of noise (e.g. thermal), standard logic is not the correct theoretical reference framework, rather
we show that statistical mechanics can work for this scope: here we formulate a complete statistical
mechanical description of the Monod-Wyman-Changeaux allosteric model for both single and double
ligand systems, with the purpose of exploring their practical capabilities to express noisy logical operators
and/or perform stochastic logical operations. Mixing statistical mechanics with logics, and testing
quantitatively the resulting findings on the available biochemical data, we successfully revise the concept of
cooperativity (and anti-cooperativity) for allosteric systems, with particular emphasis on its computational
capabilities, the related ranges and scaling of the involved parameters and its differences with classical
cooperativity (and anti-cooperativity).

C ell’s life is based on a hierarchical and modular organization of interactions among its molecules1: a
functional module is defined as a discrete ensemble of reactions whose functions are separable from those
of other molecules. Such a separation can be of spatial origin (processes ruled by short range interactions)

or of chemical origin (processes requiring specific interactions)2. The latter, i.e., chemical specificity, is at the basis
of biological information processing3,4. A paradigmatic example of this is the signal transduction pathway of the
so called two signal model in immunology by which an effector lymphocyte needs two signals (both integrated on
its membrane’s highly-specific receptors in a close temporal interval) to get active5: these signals are the presence
of the antigen (via the complex MHC-TCR) and the consensus of an helper-cell (via CD40 and an eliciting
cytokine); this constitutes a biological, stochastic AND gate6. We added the adjective stochastic because, quoting
Germain, ‘‘as one dissects the immune system at finer and finer levels of resolution, there is actually a decreasing
predictability in the behavior of any particular unit of function’’, furthermore, ‘‘no individual cell requires two
signals (¼) rather, the probability that many cells will divide more often is increased by co-stimulation’’7: as a
result, standard logic (where operations follow a deterministic chain) plays as the ideal reference framework,
while an operative one -a stochastic formulation of logic- should take into account the presence of noise too.

Beyond countless natural examples, biologic gates have been realized even experimentally, see e.g. Refs. 8–18,
the ultimate goal being the realization of stochastic, yet controllable, biological circuits19–22.

Such striking outcomes also arouse a great theoretical attention aimed to develop a self-contained framework
able to highlight their potentialities and suggest possible developments. In particular, statistical mechanics has
proved to be a proper candidate tool for unveiling biological complexity: in the past two decades statistical
mechanics has been applied to investigate intra-cellular (e.g. metabolomics23,24, proteinomics25,26) as well as
extra-cellular (e.g. neural networks3,27, immune networks28,29) systems. Also, statistical mechanics intrinsically
offers a partially-random scaffold which is the ideal setting for a stochastic logic gate theory.

Another route to unveil the spontaneous information processing capabilities of biological matters is naturally
constituted by information theory (see e.g. Refs. 30, 31 and references therein): remarkably, statistical mechanics
and information theory (see the seminal works by Khinchin32,33, and by Jaynes34,35) and, in turn, information
theory and logics (see the seminal works byVonNeumann36, and by Chaitin37) have been highlighted to be deeply
connected. Therefore, it is not surprising that even in the quantitative modeling of biological phenomena these
two routes are not conflicting but, rather, complementary.
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In this work, we will use the former (statistical mechanics) to
describe a huge variety of biochemical allosteric reactions, and then,
through the latter (mathematical logic), we will show how these
reactions naturally encode stochastic versions of boolean gates and
are thus capable of noisy information processing.
We will especially focus on allosteric reactions (as those of

Koshland, Nemethy and Filmer (KNF)38 and Monod-Wyman-
Changeaux (MWC)39) as they play a major role in enzymatic pro-
cesses for which a great amount of experimental data is nowadays
available. However, classical reaction kinetics (i.e. those coded by
Hill, Adair, etc.40) can also perform logical calculations and they have
been set in a statistical mechanical scaffold in Ref. 19: along the paper
we will deepen the crucial differences between the two types of
kinetics -allosteric cooperativity versus standard cooperativity- when
framed within statistical mechanics.

Results
In the case of allosteric receptors, several models have been intro-
duced. Many of these assume that a receptor can exist in either an
active or inactive state, and that binding of a ligand biases the recep-
tor to one of the two states. In particular, in the Monod-Wyman-
Changeaux (MWC) model, ligand-bound receptors can be in either
state, but coupled receptors switch between states in synchrony.
Beyond that pioneering work, several models able to provide qual-
itative and quantitative descriptions of binding phenomena have
been further introduced in the Literature, as e.g. the sequential model
by Koshland, Nemethy and Filmer (KNF).
Here we consider MWC-like kinetics, and we reformulate it into a

statistical mechanical framework. We start by introducing termino-
logy and parameters for mono-receptor/mono-ligand systems (play-
ing for single input gates as YES and NOT) and then we expand such
a scenario in order to account for the kinetics of more complex
systems (double-receptors/double-ligands, as those will play for
two-input gates as AND, NAND, OR, NOR).
The plan is as follows: Once introduced the microscopic settings

(e.g., the occupancy states si, i g (1, ¼, n) of n receptors and the
dissociation energy h), we define the Hamiltonian functions H(s, h)
coding for the chemical bindings; then -being b the thermal noise
b5 1/kBT (where kB is the Boltzmann constant and T represents the
temperature) - we build the relatedMaxwell-Boltzmann probabilistic
weights / exp[2bH(s, h)]. The latter allows computing the par-
tition functions Z~

X
s
exp {bHð Þ, both for the active state ZA

and for the inactive ZI state; the ratios, pA 5 ZA/(ZA 1 ZI) and
pI 5 ZI/(ZA 1 ZI) then return the probabilities of the active/inactive
states as functions of the parameters (e.g. b, h, n).
These probabilities are first analyzed from a logic perspective in

order to show how they can account for boolean gates and then used
to successfully fit the outcomes of the experiments on enzyme based
logic. This route, although rather lengthy, shows why allosteric
mechanisms share similar behaviors with those of classical coopera-
tivity, but, at the same time, clearly reveals deep differences between
these phenomena.

System description. Specifically, we start considering a system built
of several molecules, each displaying one or more receptors. Each
receptor exhibits multiple binding sites where a ligand can reversibly
bind, and which can exist in two different states (i.e. active and
inactive). In general the receptors exhibited by a given molecule
can differ in e.g., the number of binding sites, the affinity with
ligands, etc. As we are building a theory for single and double
input gates, in the following, we will focus on simple systems
where receptors can house only one or two kinds of binding sites,
as exemplified in Fig. 1.
The simplest systemwe consider ismade of a set of receptors of the

same kind and in the presence of a unique ligand (see panel a in
Fig. 1). More precisely, each receptor is constituted by n functionally

identical binding sites indexed by i, whose occupancy is given by a
boolean vector s 5 {si}, i 5 1, ¼, n where si 5 1 (respectively 0)
indicates that the binding site i is occupied (respectively vacant).
As required by the all-or-none MWC model, each receptor is

either active (T) or inactive (R); the receptor state is indicated by a
boolean activation parameter a, (a 5 0, 1)41,42.
In the absence of the ligand, the active and inactive states (which

are assumed to be in equilibrium) differ in their chemical potential,
whose delta, indicated by E, can, in principle, be either positive
(favoring the inactive state) or negative (favoring the active state):
note that, the presence of a difference E in energy between the active
and inactive states implies an exponentially unbalanced ratio
between their relative concentrations (ruled by the Maxwell-
Boltzmann weight).
Given a system of receptor molecules in the absence of ligand and

in equilibrium at a given temperature T, we pose the following
assumptions:

(a) As both the active and inactive state may coexist, the composi-
tion of the system also depends on the parameter L; L(b). 0,
namely the equilibrium constant at inverse temperature b (in
proper units, namely setting the Boltzmann constant KB ; 1).
Letting [R] be the total concentration of the receptors, [RA]
(respectively [RI]) the concentration of the active (respectively
inactive) receptors in the in absence of ligand, it is [R]5 [RA]1
[RI] and [RA] 5 L[RI];

(b) For the sake of simplicity, binding sites of a mono-receptor are
considered as functionally identical (as in the original model39).

In the absence of ligand, we also need to establish which of the two
states (namely the active and inactive one) has a higher chemical
potential. As shown in the Literature (see Ref. 41 and below) the
choice is in general arbitrary (i.e. case dependent), hence we take
both possibilities into account. We therefore consider two sets of
mutually exclusive assumptions (the latter of which is denoted by a
‘‘prime’’ symbol).

(c) The active state has a higher chemical potential. Notice that,
while this assumption is in contrast with the original MWC
model39, the model itself is still self consistent as thoroughly
explained in Ref. 41. The same conclusionmay be drawn by the
fact that, in theMWCpaper, the opposite assumption is merely
exploited for calculations. (i.e. E . 0), as e.g. in Refs. 41, 43,
hence the inactive state must then be predominant (to min-
imize energy) (i.e. L=1);

Figure 1 | This scheme summarizes the kind of systems we are considering

here:Mono-receptor/Mono-ligand (a),Mono-receptor/Double-ligand (b)

and Double-receptor/Double-ligand (c). In this cartoon all molecules are

shown as dimeric, but cases a and b also work with monomeric structures.

In theMono-receptor/Mono-ligand case only one kind of receptor and one

kind of ligand (compatible with the receptor) are considered; in theMono-

receptor/Double-ligand case we still have one kind of receptor, but two

different ligands both compatible with the receptor; in the Double-

receptor/Double-ligand case we consider molecules displaying two

different receptors in the presence of two different ligands, each compatible

with only one receptor. The kinetics of these systems is addressed in System

description Section, while in Section Logical Operation they are shown to

work as YES, OR, and AND logic gates. See also Ref. 42.
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AUT

(c9) The active state has a lower chemical potential (i.e. E9;2E,
0) as e.g. in the original MWC model39, hence (still for minimum
energy requirement) the active state must then be predominant
(i.e. L?1).

For a thorough comparison of these two alternative assumptions
(and those of the original MWC) we refer to Tab. 1.
For the sake of clarity we will from now on refer to the (c)-type

assumptions as ‘‘assumptionsA’’ and to the (c9)-type assumptions as
‘‘assumptionsA’’’. We also refer to theA’ -set of assumptions as dual
to assumptionsA, where this terminology is introduced tomatch the
one of mathematical logic and will be therefore explained in Section
‘‘Logical operations’’. All the assumptions without a dual one are
taken to be part of both the assumption sets.
Let us now discuss the case of a system of receptor molecules in the

presence of ligand. Clearly, the behavior of the system is expected to
depend on ligand’s concentration [S] and on the receptor state (i.e.
either active or inactive). The dependence on the receptor state is
formalized by introducing dissociation constants KA and KI for the
receptor in the active and inactive state, respectively (see Ref. 42).
Letting [(RAS)i] be the concentration of the receptor/ligand com-
plex’s molecules which have exactly i occupied binding sites, we
define the average concentration of the active receptor/ligand com-
plex as

RA S½ �h i: 1
n

Xn
i~1

i: RA Sð Þi
� �

: ð1Þ

We can define the average concentration h[RI S]i of the inactive
receptor/ligand complex in an analogous way, and we can then set

KA:
S½ � R½ �
RA S½ �h i , KI:

S½ � R½ �
RI S½ �h i , ð2Þ

in accordance with the original presentation of MWCmodel (in Ref.
39, p. 90,microscopic dissociation constants of a ligand [¼] bound to a
stereospecific site are considered, whose arithmetic weighted means we
denote as global dissociation constants.). The dynamics of the recep-
tor/ligand system is therefore determined by the variable [S] and the
parameters KA, KI.
Now, considering both the ligand and the receptor/ligand solution

we assume that

(d) receptor-ligand solution is homogeneous and isotropic. This
mean-field-like assumption is actually a key assumption of all
the approaches in modeling classical reaction kinetics, see e.g.
Ref. 19.

Finally, a ligand can play as an activator (i.e. its presence enhances
the receptor activation) as well as a suppressor (i.e. its presence
hindrances receptor’s activation) depending on the chemical poten-
tial time by time associated to the chemical reaction under examina-
tion (assumptions (c)’s). This choice is dual and will be deepened
later: to avoid trivial (i.e. static) behavior of the system, we have to set
either

(e) The ligand is an activator, i.e. the presence of the ligand
enhances activation of the receptor. Therefore, the occupation
of each receptor singularly decreases the energy required for
activation by a parameter Ew0.

AUT

(e9) The ligand is a suppressor, i.e. the presence of the ligand
hindrances activation of the receptor. Therefore, the occupation of
each receptor singularly increases the energy required for activation
by a parameter Ew0. Ta
bl
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Mono receptor/Mono ligand (MM) properties at equilibrium. Under
assumptions A, any mono-receptor/mono-ligand system, built by n
receptors [ig (1, ¼, n)], and whose occupancy is ruled by si5 (0, 1),
can be described by the following allosteric Hamiltonian function

H s,að Þ~ E{E
Xn
i~1

si

 !
azh

Xn
i~1

si, ð3Þ

where we recall that E is the energy delta given by chemical poten-
tial, and h is the dissociation energy, namely the energy captured by
a single binding site of the inactive state receptor by binding to a
ligand molecule; the term in the brackets accounts for the fact that
ligand acts as an activator since, for the active state (a 5 1) binding
is energetically favored, while in the inactive state (a5 0) the related
term disappears in the Hamiltonian that reduces to the last term
accounting for the bare association energy only.
By the same reasoning under assumptions A’, we obtain

H s,að Þ~ {EzE
Xn
i~1

si

 !
azh

Xn
i~1

si, ð4Þ

The main features of the mono-receptor/mono-ligand systems
described above are summarized in Fig. 2.
It is worth highlighting that the Hamiltonians (3) and (4) do not

include any two-body couplings, i.e. any term !
X

ij
sisj: this

framework is intrinsically one-body in the statistical mechanical
vocabulary and this has implications in biochemistry too. For
instance, one-body models do not undergo phase transitions and,
as the latter mirror ultrasensitive reactions in chemical kinetics19,
those are ruled out by these Hamiltonians.
Since the activation parameter is boolean, the receptor/ligand

complex state may be considered regardless of the state of the recep-
tor, by introducing the two Hamiltonians HA(s) ; H(s, 1) and
HI(s) ; H(s, 0), defining the active and the inactive state energy,
respectively. The corresponding partition functions are

ZA~
X
sf g

e{bHA sð Þ ð5Þ

ZI~
X
sf g

e{bHI sð Þ, ð6Þ

while the total partition function Z is given by

Z~
X
sf g, af g

e{bH s,að Þ~ZAzZI : ð7Þ

A few remarks are in order here:
– The summations in the partition function (7) account for the

activation degree of freedom too. This means that the latter particip-
ate in thermalization or, in other words, that the intrinsic timescale
for the dynamics of a is bounded from above by those of the s: this is
consistent with the original MWC assumptions of synchronized
switches among coupled receptors (the so called all-or-none
behavior).
– This model can be solved even at finite n, namely without the

oversimplifying thermodynamic limit n R ‘.
– All the energies can be expressed in units of the thermal energy

kBT; b21, hence, in order to avoid possible misunderstanding as T
already addresses the tense molecular state and to keep notation as
simple as possible, in the following we set b 5 1, thus forcing all
aforementioned parameters and variables to be dimensionless.
– As a consequence of the two previous remarks, the stochasticity

is retained by the parameter n, such that for n R ‘ stochastic com-
puting will collapse on the deterministic one (that is, classical logic)
and, on the other side, the smaller n and the larger the noise affecting
the system.
Now, focusing on ZA (as ZI is analogous), we define k~

Xn

i~0
si,

and we can therefore write

ZA~
X
s,1ð Þ

e{H s,1ð Þ~ ð8Þ

~
Xn
k~0

Ake
{ E{kEð Þ{hk~e{E

Xn
k~0

Ake
k E{hð Þ, ð9Þ

where Ak denotes the number of times that the sum
Xn

i~1
si turns

out to be equal to k. Noting that s is a binary vector, we get straight-

forwardly that Ak~
n
k

� �
, and therefore

ZA~e{E
Xn
k~0

n

k

 !
ek E{hð Þ

~e{E
Xn
k~0

n

k

 !
ek E{hð Þ:1n{k

ð10Þ

~e{E 1ze E{hð Þ
h in

: ð11Þ

Analogously, ZI 5 (1 1 e2h)n.
Thus, the probabilities pA and pI for the complex to be in the active

or in the inactive state, respectively, are

pAð ÞMM~
ZA

ZAzZI
~

e{E 1zeE{h
� �n

e{E 1zeE{hð Þnz 1ze{hð Þn , ð12Þ

pIð ÞMM~
ZI

ZAzZI
~

1ze{h
� �n

e{E 1zeE{hð Þnz 1ze{hð Þn : ð13Þ

where the subscript MM stands for ‘‘Mono-Mono’’.

Figure 2 | This scheme summarizes the states and the weights of the
simplest MWC molecule (that, in turn, codes for the YES gate). Having

only one binding site (n 5 1), the number of possible states is four, from

top to bottom: inactive and vacant, active and vacant, inactive and

occupied, active and occupied. Each state corresponds to an energy, to a

statistical mechanics weight and to a chemical weight. The energy is

obtained by considering both the conformational degree of freedom of the

molecule and the free energy of the binding process. The statistical

mechanics weight is obtained according to the Boltzmann factor and the

chemical weight is derived according to Tab. 1. See also Ref. 48.
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Correspondingly,

p’A
� �

MM~
ZA

ZAzZI
~

eE 1ze{E{h
� �n

eE 1ze{E{hð Þnz 1ze{hð Þn , ð14Þ

p’I
� �

MM~
ZI

ZAzZI
~

1ze{h
� �n

eE 1ze{E{hð Þnz 1ze{hð Þn : ð15Þ

The interesting quantity to look at is (pA)MM, as it corresponds to
the concentration �T of receptors in the active state and this is
expected to continuously increase (respectively decrease) with the
percentage of activation enhancement (i.e. e2h, see Tab. 1) under
assumptionsA (respectivelyA’).We notice, though, that the original
model39 is concerned with �R (i.e. with pI) rather than �T ; anyhow, pA
and pI carry the same information as they are complementary
probabilities.
Notably, the correspondence stated in Tab. 1 confirms the con-

sequences of assumptions (c) and (e), that is, choosing E . 0 yields
L , 1, while choosing Ew0 yields c . 1. In particular, according to
the notation of Ref. 39, we have

�R~
1zað Þn

L 1zcað Þnz 1zað Þn , ð16Þ

�T~1{�R~
L 1zcað Þn

L 1zcað Þnz 1zað Þn : ð17Þ

Conclusions on the dual assumptionsA’ are much the same and will
not be repeated.

Mono-receptor/Double-ligand (MD) properties at equilibrium.Under
the assumptions of the previous section, any mono-receptor/double-
ligand system, built by n receptors [i g (1, ¼, n)] and whose occu-
pancy is ruled by si 5 (0, 1), can be described by the following
allosteric Hamiltonian function

H s,a,I,Jð Þ~ E{E
Xn
i~1

si

 !
azh1

X
i[I

sizh2
X
j[J

sj, ð18Þ

where, in contrast with the previous case described by eq. (3), two
distinct ligands, whose dissociation energies are denoted by h1 and h2
respectively, are considered.More precisely, I and J are two subsets of
{1, ¼, n} such that I\J~1, and they denote the sites linked to the
first ligand and to the second ligand, respectively. To express this in
formulae, we impose that I|J~ indices such that si~1f g.
As we did for theMono-Mono case, the partition function coupled

to the Hamiltonian (18) is given by

Z~
X
s,að Þ

e{H s,að Þ

~
X
s,0ð Þ

e{H s,0ð Þz
X
s,1ð Þ

e{H s,1ð Þ
ð19Þ

~ZIzZA: ð20Þ
We focus on ZA, as ZI is analogous. Let us pose k1 5 jIj and k2 5 jJj,
notice that k~k1zk2~

Xn

i~0
si, and write the sums explicitly as

ZA~
X
s,1ð Þ

e{H s,1ð Þ~
Xn
k~0

Xk
k1~0

Ak,k1e
{ E{kEð Þ{h1k1{h2 k{k1ð Þ, ð21Þ

where Ak,k1 denotes the number of times that the sum
Xn

i~0
si is

equal to k, with the condition that k1 of the si’s belong to the set I.
This quantity is rather tricky to calculate but can actually be rewritten
in terms of multinomial coefficient (which counts the number of

ways we can choose k elements among n, with the condition that
they are divided in groups of kj elements each). Then, we get

Ak,k1~
n

k1,k{k1

� �
~

n

k1,k2

� �
, ð22Þ

in such a way that ZA can be rewritten (using k1 and k2) as

ZA~e{E
Xn

k1zk2~0

Xk1zk2

k1~0

n

k1,k2

� �
e k1zk2ð ÞE{h1k1{h2k2 ð23Þ

~e{E
Xn

k1zk2~0

Xk1zk2

k1~0

n

k1,k2

� �
ek1 E{h1ð Þ:ek2 E{h2ð Þ ð24Þ

~e{E 1ze E{h1ð Þze E{h2ð Þ
h in

, ð25Þ

where in the second passage we must consider a 1n{ k1zk2ð Þ factor,
which allows us to conclude the calculation, by simply expanding the
trinomial.
Analogously, we obtain ZI~ 1ze{h1ze{h2

� �n
.

Indeed, we have

pAð ÞMD~
e{E 1zeE{h1zeE{h2
� �n

e{E 1zeE{h1zeE{h2ð Þnz 1ze{h1ze{h2ð Þn , ð26Þ

pIð ÞMD~
1ze{h1ze{h2
� �n

e{E 1zeE{h1zeE{h2ð Þnz 1ze{h1ze{h2ð Þn : ð27Þ

In a similar fashion, under assumptions A’, we obtain

p’A
� �

MD~
eE 1ze{E{h1ze{E{h2
� �n

eE 1ze{E{h1ze{E{h2ð Þnz 1ze{h1ze{h2ð Þn , ð28Þ

p’I
� �

MD~
1ze{h1ze{h2
� �n

eE 1ze{E{h1ze{E{h2ð Þnz 1ze{h1ze{h2ð Þn , ð29Þ

where the subscript MD stands for ‘‘Mono-Double’’.

Double-receptor/Double-ligand (DD) properties at equilibrium.
Under the same assumptions of the previous sections, any double-
receptor/double-ligand system, built by n receptors [i g (1, ¼, n)]
and whose occupancy is ruled by si 5 (0, 1), and ti 5 (0, 1) can be
described by the following allosteric Hamiltonian function

H s,t,að Þ~H1 s,að ÞzH2 t,að Þ ð30Þ

~ 2E{E1
Xn1
i~1

si{E2
Xn2
i~1

ti

 !
azh1

Xn1
i~1

sizh2
Xn2
i~1

ti: ð31Þ

We note that the system factorizes into two independent Mono-
Mono Hamiltonians, hence we can entirely skip the calculations,
referring to results already presented in the section devoted to
Mono-receptors/Mono-ligand properties. Thus, focusing on a sym-
metric case for simplicity, i.e. E1~E2~E and n1 5 n2 5 n, we get

pAð ÞDD~
e{2E 1zeE{h1zeE{h2zeE{h1eE{h2

� �n
1ze{h1ð Þn 1ze{h2ð Þnze{2E 1zeE{h1zeE{h2zeE{h1eE{h2ð Þn ,

ð32Þ

while, via the dual assumptions A’, we have

p0A
� �

DD~

e2E 1ze{E{h1ze{E{h2ze{E{h1e{E{h2
� �n

1ze{h1ð Þn 1ze{h2ð Þnze2E 1ze{E{h1ze{E{h2ze{E{h1e{E{h2ð Þn ,
ð33Þ

where the subscript DD stands for ‘‘Double-Double’’.
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Logical operations. Let us now explore the possibility of using these
allosteric receptor-ligand systems as operators mimicking stochastic
logic gates: the presence of ligands (variables in Logic) is denoted as Si
for the i-th ligand, and the presence of receptors (operators in Logic)
is denoted as RA,i and RI,i for the active and inactive state of the i-th
receptor, respectively: note that si and Si are conceptually different
because, in Logic, Si mirrors the presence of the i-th ligand, that is
Si 5 ‘‘true’’ stands for a high concentration presence of the i-th
ligand, thus within the statistical mechanical route the S’s are linked
to the h’s rather than to the s’s.
Operators are of two kinds: the unary operators YES and NOT,

which evaluate a single argument, and the binary operators, e.g.,
AND and OR, which evaluate two arguments.
Let us describe the examples of concrete interest in the paper:
– Affirmation: ‘‘S’’, namely the evaluation of the presence of ligand

S, which returns true if and only if the ligand S is present. Hereafter
this operator will be denoted as stochastic YES (or, in case a distinc-
tion between several ligands is necessary, as YESS).
–Negation: ‘‘:S’’, namely the evaluation of the absence of ligand S,

which returns true if and only if the ligand S is not present. Hereafter
this operator will be denoted as stochastic NOT (or NOTS).
– Conjunction: ‘‘S1 ^ S2’’, namely the evaluation of the presence

of both ligands, which returns ‘‘true’’ whenever both ligands occur
to be present (i.e., in the case that S1 and S2 are assigned value ‘‘true’’)
and ‘‘false’’ whenever at least one of the two ligands is not present (i.
e., in the case that either S1 or S2 are assigned value false). The
evaluation of such operator is hereafter denoted as S1 AND S2 (stoch-
astic AND).
– Non-exclusive disjunction: S1 _ S2, namely the evaluation of the

presence of at least one ligand, which returns true whenever at least
one ligand is present and value false whenever they are both absent.
The evaluation of such operator is hereafter denoted as S1 OR S2
(stochastic OR).
As we will see, the receptor molecule plays as an operator, while

ligands play as variables. In order to evaluate the formula, each
variable can assume value either ‘‘true’’ of ‘‘false’’ according to the
ligand concentration, where ‘‘true’’ means that the ligand is present
at a concentration larger than a threshold value, while ‘‘false’’means
that the ligand concentration is smaller than such a value. Moreover,
the value arising from the evaluation of the operators corresponds to
the activation state of the receptor: active if the evaluation returns
‘‘true’’ and inactive is evaluation returns ‘‘false’’.

Mono-receptor/Mono-ligand system: YES and NOT functions.All the
plots in this and in the following sections are based on some scaling
assumptions that will be discussed further in the paper (see Section
‘‘Methods’’). These assumptions are essential to our purpose (that is,
they enable us to tune the free variables introduced defining the
Hamiltonians), and are deduced by physical and biochemical reason-
ing. We will refer to these assumptions as they are reported in
Section Methods below.
Under scaling assumptions (35), (39) and (40), plots of the activa-

tion probability (pA)MM(h) from eq. (12) show marked sigmoidal
behavior (see Fig. 3, upper panel), signaling activation of the receptor
in significative presence of the ligand, i.e. for small values of the
variable h: the logarithmic relation between h and the concentration
follows directly both from the original MWCmodel, as summarized
in Table 1 and from the Thompson approach41.
Thus, the function (pA)MM may be considered as mimicking the

logical YES[L] function, assuming boolean values 0 for low ligand
concentration and 1 for high ligand concentration, as one can see
from Tab. 2.
The threshold value is set at �h which can in turn be fixed by

properly choosing the system constituents (e.g. the number of bind-
ing sites hosted by a receptor).
On the contrary, the function p’A

� �
MM of eq. (14) may be consid-

ered as mimicking the logical NOT[L] function (Fig. 3, lower panel),
assuming boolean values 0 for high ligand concentration and 1 for
low ligand concentration, as one can see from Tab. 2.
A comparison of the theoretical versus real behavior of these gates

is presented in Fig. 4, while the best fitting procedure is discussed in
Section ‘‘Best fitting procedures’’.

Mono-receptor/Double-ligand system: OR and NOR functions. The
activation probability (pA)MD (eq. (26)) can be used to model a
stochastic version of the logic gate OR. In fact, if we look at the
presence of the two different ligands as a binary input, the behavior
of (pA)MD (with the scaling assumptions of eqs. (35), (39)), as a
function of h1 and h2 (see Fig. 5), recovers the OR’s one (see
Tab. 2). Similarly to the YES case, the value 0 for h1 and for h2 denotes
the saturation of the ligand. Therefore, consistently with the struc-
ture of OR, the presence of only one out of the two ligands is suf-
ficient to make the molecule active; conversely, the value E denotes
the absence, thus for h1~h2^E, (pA)MD is vanishing, namely, it
returns as output ‘‘false’’. Note that the projection of the plot over

Figure 3 | Upper panel: Sigmoidal behavior of pA(h) with parameters E5 2n, E~2E=n, where n5 5 (blue), n5 50 (red), n5 500 (gold). Lower panel:
Anti-sigmoidal behavior of p’A hð Þ with parameters E 5 2n, E~2E=n, where n 5 5 (blue), n 5 50 (red), n 5 500 (gold).
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h1~E (or h2~E) gives a sigmoid, consistently with the fact that, if one
of the two inputs is constantly false, the OR recovers the YES.
Performing the same calculations, the dual counterpart p’A

� �
MD of

eq. (28)models the logical NOR gate, that is the direct negation of the
previous one, as shown in Fig. 5).
A comparison of the theoretical versus real behavior of these gates

is presented in Fig. 6 (for the OR only), whose data have been col-
lected from an experiment sketched in Fig. 7 (lower panel); the best
fitting procedure is discussed in the Section ‘‘Best fitting procedures’’.

Double-receptor/Double-ligand system: AND and NAND functions.
The function (pA)DD previously described (eq. (32)) models a stoch-
astic version of the logic AND gate (see Tab. 2). As in the case of OR,
we look at the two ligands as a binary input, and we assume the
scaling assumptions coded in eqs. (35), (42), (44). The resulting
behavior of (pA)DD fits the one expected for the AND function, with
fitness to the expected plot that sensibly improves in the extremal
regions of the plot, i.e. for h1,2*0,E (see Fig. 8). Again, its projection
returns a sigmoid because if one of the two inputs is constantly true,
the AND recovers the YES.
The dual version p’A

� �
DD (eq. (33)) models the logic gate NAND,

i.e. the direct negation of the previous one. As this negation is
precisely dual, so is the shape of the plot (see Fig. 8).
A comparison of the theoretical versus real behavior of these gates

is presented in Fig. 9 (for the ANDonly), while, mirroring the exposi-
tion of the OR gate, Fig. 7 (upper panel) summarizes the experiment
working as data source; the best fitting procedure is discussed in the
Section ‘‘Best fitting procedures’’.

Conclusions
Chemical computing uses molecular systems to perform logical
operations, mimicking processes typical of electronic devices.
Advantages and disadvantages appear when comparing these two
approaches to computation: chemical computing requires (for a sin-
gle operation) a smaller size (Angstroms versusmicrons) and a lower
energy consumption (,10219 Joule versus , 1029 Joule), yet it is
slower than electronic computing (fromkilohertz tomegaherz versus
gigahertz). Further, biochemical information processing performs at

relatively large levels of noise (and this happens at different scales,
ranging from enzyme-based logic gates10 to nucleic acid logic cir-
cuits21: noise propagates in the system as thermal disorder or in form
of cross-talk among system’s constituents4,49. Hence, classical (i.e.
deterministic) logic works only as an ideal reference framework
and the field of research would strongly benefit from a robust stoch-
astic reformulation of logic gates whose properties can be safely
tested and used as guides in in-vitro experiments.
In this work we showed that statistical mechanics can play a major

role to accomplish this task: through statistical-mechanical models,
we analyzed paradigmatic allosteric reaction kinetics and we proved
their ability in performing noisy operations (hence working as suit-
able versions of stochastic logic gates). Moreover, we tested their
performances (as resulting from the theory) on real data taken from
enzyme-based information processing systems finding overall very
good agreement between theoretical predictions and experimental
behaviors. From this perspective, we showed that allosteric kinetics
of mono receptor systems naturally encodes a noisy version of the
input-output relations typical of the YES and NOT gates, while
allosteric kinetics of double receptors systems plays as a stochastic
version of the OR (NOR) and AND (NAND) gates. Finally, we
checked that in the noiseless limit of the theory (for n R ‘, or,
alternatively, for bR‘) these gates recover the pure logic-like beha-
vior (i.e. deterministic information processing).
The framework developed here allows establishing controllable,

explicit relations among the system parameters, with remarkable
practical outcomes. For instance, the noise that generally affects
biological gates can be quantified permitting the management of
large devices where different gates work in cascade and where
noise-driven errors (possibly amplified by the various gates) actually
constitute severe limitations. Also, in order to build large biochem-
ical circuits, understanding how simple building blocks behave and
how their interactions scale up with system’ size is mandatory as well
as quantifying the computational power of the system itself: classical
reaction equations (i.e. systems of differential equations) can not
accomplish these tasks, while statistical mechanics can. In fact, com-
bining Hamiltonians coding for various gates in a cascade fashion is
straightforward in the present formalization, further, an arsenal of

Table 2 | The truth table of all the logical operators introduced by now

Input YESA NOTA A OR B A NOR B A AND B A NAND B

A B A :A A ~ B A # B A ‘ B A " B

1 1 1 0 1 0 1 0
1 0 1 0 1 0 0 1
0 1 0 1 1 0 0 1
0 0 0 1 0 1 0 1

Figure 4 | Left: (pA)DD(h1, h2) plots.Activation of the receptor is verified by small values of h1 and h2, corresponding to a significative presence of both the

two ligands, thus simulating a stochastic AND function. Right: p’A
� �

MD h1,h2ð Þ plots. Activation of the receptor is verified by high (i.e. small in absolute

value) values of h1 or h2, corresponding to a significative presence of any of the two ligands, thus simulating a stochastic NAND function.
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tools stemmed from the neural network branch (e.g., methods to
address system’s computational capacity, memory storage, etc.27)
becomes immediately handily via this route.

Methods
In this section we discuss three major aspects of our work: the scaling assumptions,
the role of allosteric cooperativity within the model and the best fitting procedures.

Scaling assumptions. As the assumption sets A and A’ only affect the sign of the
parameters E, E and of the variable h, we cannot expect every choice of these quantities
to yield a realistic behavior from a biophysical viewpoint. Particularly an effective
range of the variable h as well as some reasonable scaling properties for E and
E are to be determined, most likely depending on n.

The first issue can be solved independently of the case considered (MM,MD,DD).
As evidenced in Tab. 1, for assumptions A it is e2h 5 [S]/KI and, being h positive,
activation enhancement [S]/KI is dimensionless and ranging in [0, 1], thus, it may be
considered as a percent molar concentration of the ligand S. Also, we expect that there
exists a numerical (percent) value for the ligand concentration, below which the
receptor activity is unaffected (see e.g. Ref. 46). We refer to this threshold value as t
and, according to Tab. 1, this also determines the significance range of h as

0vhv{logt, ð34Þ

which reliably limits the range of the dissociation energy to finite values. As t
determines the receptor sensitivity with respect to its activity, it is reasonably expected
that t< KA/KI; in fact such inverse proportional dependence of twith respect toKI is
consistent with increasing monotonicity of h with respect to KI (consistently with
assumptions (c), (e)).

Moreover, from Tab. 1, t<e{E, whence a reliable significance range for h is

0vhvE: ð35Þ

Dually, for assumptions A’ it is eh 5 KI/[S] and the same conclusion follows that
KI/[S] may be considered as a percent molar concentration of the ligand S. As for t9we
have t9 < KI/KA (following from assumptions (c9), (e9)), yielding

{Evhv0: ð36Þ

Now we focus on the scaling of E and E: in the following we address this matter
separately for the case of one or two receptors, which have different nature.

Mono-receptor case: YES/NOTand OR/NOR gates. We refer only to assumptions A,
since dual gates clearly scale in the same way. Let us start considering the
Mono-Mono case: given Eq. 12, we can define �h as the value of the dissociation energy
such that pAð ÞMM

�h
� �

~1=2, which implies

e{E 1zeE{
�h

� 	n
~ 1ze{

�h
� 	n

: ð37Þ

On the other hand, the active (a5 1) and saturated (s5 1) state is an extremal state
of the system corresponding to minimum entropy. As a result

H a~1,s~1,�h
� �

~E{nEz�hn~0: ð38Þ

From the previous two equations we have

�h~
E
n
, E~

2E
n
, ð39Þ

The same conclusion can be drawn independently following another route:
according to the constraint (35), the maximum value attainable by the Hamiltonian
(3) is E and it corresponds to an active state with h~E; on the other hand, the
minimumvalue attainable isE{nE, corresponding to h5 0 and a fully occupied state.
Imposing the range interval for the energy E{nE, E½ � to be symmetric around 0 it
must then be E{nE~{E, namely E~2E=n. Finally we observe that E depends only
on the receptor, therefore in the presence of a single receptor-type it must be E / n in
view of the linear extensivity of thermodynamics; direct verification shows that

E<2n ð40Þ

best fits our purpose.

Figure 5 | The stochastic OR gate has been realized in two coupled steps involving enzymatic processes as sketched in Fig. 7: first enzyme is esterase,
that reacts with ethyl butyrate ([A]) or methyl butyrate ([B]), or both, catalyzing production of ethanol and methanol, respectively. Butyric acid is a

byproduct of the process. To set the gate, the physical zeros of the signals have been fixed experimentally to convenient input values (ethyl butyrate 10 mM

and methyl butyrate 10 mM). Bullets represent experimental data8, whereas the surface represents the best fitting according to eq. (26).

Figure 6 | Left: (pA)MD(h1, h2) plots. Activation of the receptor is achieved by small values of h1 or h2, corresponding to a significative presence of any of

the two ligands, thus simulating a stochastic OR function. Right: p’A
� �

MD h1,h2ð Þ plots. Activation of the receptor is verified by small values of h1 or h2,

corresponding to a significative presence of any of the two ligands, thus simulating a stochastic NOR function. Note that for smaller n curves are smooth

(noisy), while for large n quasi-discontinuous jumps appear..
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Scaling assumptions for the OR gate are derived imposing that the behavior of the
function (pA)MD recovers that of (pA)MM when one of the ligands is absent (that is,
when h2 R ‘). If we carry out the calculation, we find that

pAð ÞMD




h2~?~ pAð ÞMM , ð41Þ

so the scaling for E and E must be the same of the previous one in order to be
consistent.

Double-receptor case: AND/NAND gates. This case differs from the Mono-receptor
onemostly because of the non-linear scaling ofE: since the receptors are dimeric, their
response must be linear with respect to each functional monomer; consequently
E / n2, and again we see directly that the proper scaling is achieved by

E<n2: ð42Þ

As far as the scaling of E is concerned, we proceed in the same way as we did for the
OR gate, and argue that posing h2 5 0 (strong presence of one ligand) must logically
recover the behavior of (pA)MM from (pA)DD. In this case, however, we do not find an
exact identity, but we can rearrange the result to look like

pAð ÞDD



h2~0

~

e{2E 1zeEð Þn
2n

1zeE{h1
� �n

1ze{h1ð Þnz e{2E 1zeEð Þn
2n

1zeE{h1
� �n , ð43Þ

Figure 7 | Schematic representation of the gates from a biochemical
perspective. Upper panel: The stochastic AND gate is shown as a

biocatalytic process. The two inputs are H2O2 and one out of three

chromogens (ABTS, ferrocyanide, guaiacol) -only the latter is illustrated-.

Signal processing is biocatalyzed by HRP and the output measure optically

as the amount of the oxidized chromogen. See Ref. 9 for more details.

Lower panel: The stochastic OR gate is shown. It involves two enzymatic

processes and a buffering part. The first enzyme is esterase, that reacts with

ethyl butyrate or methyl butyrate (or both) biocatalyzing production of

ethanol and methanol, respectively. Butyric acid is a byproduct of the

process and, as its production lowers the pH of the system, further a buffer

is added. The product of the process is measured by absorbance at l 5

420 nmusing a UV-2401PC/2501PCUV-visible spectrophotometer with a

TCC-240A temperature controller holder. See Ref. 8 for more details.

Figure 8 | Upper panel: stochastic YES gate, achieved through the
statistical mechanical formulation of the allosteric monoreceptor-
monoligand complex under assumptions A and tested on E. colii
chemotaxis network response measured by fluorescence resonance
energy transfer (FRET) to decreasing concentrations (in mM) of a-
methylaspartate (MeAsp, [A]); data from Ref. 44. Lower panel: stochastic
NOT gate, achieved under assumptions A’ and tested on E. colii FRET-

measured chemotaxis network response to increasing concentrations (in

mM) of MeAsp ([A]); data from Ref. 45. See Refs. 44, 45 for more details.

Figure 9 | The stochastic AND gate has been realized by two inputs constituted by H2O2 ([A]) and guaiacol ([B]) as the chromogen, while L-ascorbic
acid [Asc](0)5 120 mMwas used for filtering; the signal processing was biocatalyzed by HRP, as sketched in Figure 7 (upper panel). The output was
measured optically as the amount of the oxidized chromogen. Bullets represent experimental data Ref. 9, whereas the surface represents the best fitting

according to eq. (32).
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so, setting e{Eef f ~
e{2E 1zeEð Þn

2n
and E~2Eef f

�
n we obtain

E*4E=3n: ð44Þ

The role of allosteric cooperativity. Now we want to deepen where the differences
between the classical cooperativity and theMWC-like one, known in the Literature as
allosteric cooperativity (see e.g., Refs. 38, 47), reside. This difference can be
investigated directly from amathematical and logical point of view by comparing the
plots of the AND gate and of the OR gate.

OR gate: classical cooperativity.Here we discuss why and how the OR gate, that can be
handled by a one-body statistical mechanical Hamiltonian (eq. (18)), does manifest a
(roughly standard) cooperative behavior. The OR Hamiltonian is indeed a rigged
one-body expression: cooperativity (meant as produced by a term, Jss, see eq. (45))
is nested within the definition of the ORHamiltonian coded in eq. (18), hidden inside
the request I\J~1. It is in fact possible to infer from this constraint that, in order to
obtain the correct ensemble K of the indices of the occupied binding sites, it is
alternatively possible to introduce two subsets I9 and J9 where only the condition
I9, J9, N is left to be respected: the price to pay for this simplification, however, is in
writing the ensemble K as K~I’zJ ’\I’\J ’, instead of K~I|J . Such way of writing
the OR constraints (which is nothing but a reformulation of the Inclusion-Exclusion
Principle) makes explicit the presence of the cooperative term which turns out to be
exactly

X
k[I’\J ’

sk . The latter can be rewritten as!
X

i,j
Jijsisj (for some positive

coupling J) because sisj5 1 if and only if both si5 1 and sj5 1. As a further check of
the latter statement it is to be noticed that the presence of a quadratic growth term
accounting for proper cooperativity may be deduced by the circular edge of the upper
plateau (Fig. 4), that is missing when looking at the AND gate (Fig. 5).

AND gate: allosteric cooperativity. In a real cooperative system there is a mutual
enhancement of the activation probability; conversely, the AND gate lacks such a
mutual enhancement, and the presence itself of both the ligands is simply necessary
for activation, or, in other words, it is possible to (biochemically) realize an AND gate
only when a (significant, that is at high concentration) amount of both ligands is
present, independently of the percent concentration relative to any of them. Since the
AND Hamiltonian (eq. (30)) results only from the juxtaposition of two YES
Hamiltonians, it is truly one-body: this fact is fully consistent with the linear edge of
the upper plateau in the AND plot (Fig. 5).

Note that, if instead of an allostericmechanics (hence with the activation parameter
a and with two different conformational states R, T), we adopted a classical (i.e. not-
allosteric) cooperative Hamiltonian for the system, we would write

H s,tð Þ~H12 s,tð ÞzH1 sð ÞzH2 tð Þ ð45Þ

~{J
Xn1 ,n2
i,j

sitjzh1
Xn1
i~1

sizh2
Xn2
i~1

ti, ð46Þ

where J is a scalar parameter tuning the reciprocal enhancement.
Comparing eq. (30) and eq. (45) we see that they would be equivalent if we could

write E1:E1 tð Þ and E2:E2 sð Þ but, as log E~KI=KA , then E1 and E2 are constant
dependent on the species making up the system but independent of their bounding
state, that is, E1=E1 tð Þ as well as E2=E2 sð Þ (see Ref. 19 for classical cooperativity).
Therefore, we cannot express the Hamiltonian (30) as a two-body system, and this
codes for the allosteric nature of this gate.

We performnow a briefmathematical analysis of the abovementioned shape of the
AND plot (from here on referred to as a ‘‘cut’’): a simple calculation shows that
Lh1 pAð ÞDD




h1 ,{h1zE=2~Lh2 pAð ÞDD




h1 ,{h1zE=2, which states that the cut is in fact cor-

responding to the straight line h2~{h1zE=2 (the symmetric angular coefficient
simply recalls the choice E1~E2). Furthermore, it is possible to prove that the slopem
of the line projection on the h1, h2-plane is in fact m<E1=E2. It follows that the case
E1~E2~E is the one best fitting the expected plot of the logical operator. On the
contrary, by taking limits for either E1?? or E2??, one recovers the YES2
(respectively YES1) as a projection on the (orthogonal) axis.

Best fitting procedures. We can finally discuss how to test the predictions of the
theory over the in vitro experiments carried on both single-input and two-inputs
(bio)-logic gates: while plots summarizing our findings have already been presented,
see Figures 6; 8; 9 for the reaction kinetics and Fig. 7 for a sketch of the experimental
settings, here we discuss how best fits of the theory versus the data have been obtained.

Since the variable h and parameters n, E, E1, E2 are dimensionless, any linear
rescaling of the function pA is allowed (whose choice is discussed below).

Unary operators. In the YES case (data from Ref. 44), the opportune
y-rescaling is obtained for each data set Dk by considering the function
rkA ¼: maxDk{minDkð ÞpAzminDk . In order to compensate the logarithmical
progression of the axis, the x-rescaling (which is effectively linear, but conveyed on a
log scale) is of the form rkA hð Þ ¼: maxDk{minDkð ÞpA hmð ÞzminDk wherem5mk

is opportunely depending on k. The displayed function is ref f ,kA , which is the same as
rkA, but varying the parameters n, Eef f ¼: 2nzk, Eef f ¼: 2E=nz‘. Consistently with
scaling equations (39), (40), k varies within 63.4%E and , within +11:25%E.

In the NOT case (data from Ref. 45) the opportune y-rescaling is obtained by
plotting precisely the function rkA ¼: maxDk{minDkð ÞpAzminDk with the same x-
rescaling as in the YES case. In order to show how precise the fitting is (after suitable
log-lin rescaling), the best fit is obtained by considering rkA as a function of n 5 nk
only, while Ek 5 2nk and E~2Ek=nk , according to the assumptions, thus the fit is
practically achieved with one degree of freedom only.

We emphasize that, in both cases, the fit may be improved by data extrapolation of
maximal (minimal) values for the range of rkA which are strictly higher (lower) than
the maxima (minima) of Dk.

Binary operators. Given the x1x2-data grid –0, ¼, M1} 3 –0, ¼, M2}, a (vertical) y-
rescaling is required in order tomatch 1 with the experimental maximum value of the
activation parameter. In order to determine such value, a stable data set S is oppor-
tunely defined; letting hSzi be the mean z-value of the stable data set, we take it as a
reliable value for the maximal experimental activation. The opportune y-rescaling is

therefore obtained by considering the function rA ¼: Szh i
pA 0,0ð Þ pA , while the x1x2-

rescaling is achieved by plotting rA h1,h2ð Þ~ Szh i
pA 0,0ð Þ pA

M1

E1
h1,

M2

E2
h2

� �
.

In the OR case, the stable data set is taken to be the data set in the [8, 10] mM 3
[8, 10]mM region. The best fit is obtained by varying the parameters n, k and ,, where
the plotted function is an effective rA function defined as ref fA , a function of n,

Eef f ¼: 2nzk, Eef f ¼: E
n
z‘. Consistently with scaling equations (39), (40), k varies

within 61%E and , within +6:25%E.
In the AND case, the stable data set is taken to be the data set in the [400, 500] mM

3 [800, 1000] mM region. The best fit is obtained by varying parameters n, k, ,1 and
,2, where the plotted function is an effective rA function defined as r

ef f
A , a function of n,

Eef f ¼: 2n2zk, Eef f1,2 ¼:
2
3
E
n
z‘1,2. Consistently with scaling equations (42), (44), k varies

within 63%E and ,1,2 within +15%E.
Results are shown in Fig. 9, for the stochastic AND, and Fig. 6 for the stochastic OR.
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