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Complete integrability of 
information processing by 
biochemical reactions
elena Agliari1,3, Adriano Barra2,3, Lorenzo  Dello schiavo4 & Antonio Moro5

Statistical mechanics provides an efective framework to investigate information processing in biochemical 

reactions. Within such framework far-reaching analogies are established among (anti-) cooperative 

collective behaviors in chemical kinetics, (anti-)ferromagnetic spin models in statistical mechanics and 

operational ampliiers/lip-lops in cybernetics. the underlying modeling – based on spin systems – has 

been proved to be accurate for a wide class of systems matching classical (e.g. Michaelis–Menten, 
Hill, Adair) scenarios in the ininite-size approximation. However, the current research in biochemical 
information processing has been focusing on systems involving a relatively small number of units, where 
this approximation is no longer valid. Here we show that the whole statistical mechanical description 
of reaction kinetics can be re-formulated via a mechanical analogy – based on completely integrable 
hydrodynamic-type systems of PDEs – which provides explicit inite-size solutions, matching recently 
investigated phenomena (e.g. noise-induced cooperativity, stochastic bi-stability, quorum sensing). 
the resulting picture, successfully tested against a broad spectrum of data, constitutes a neat rationale 

for a numerically efective and theoretically consistent description of collective behaviors in biochemical 

reactions.

Since the pioneering work by Hopield1 on kinetic proofreading and the early applications of stochastic tech-
niques to reaction kinetics by Chay and Ho2 or Wyman and Phillipson3, the combination of a number of recent 
signiicant results, both experimental (see e.g. refs 4–7) and theoretical (see e.g. refs 8–11), has boosted the cur-
rent understanding of biochemical information-processing systems, namely of how the thermodynamics of bio-
chemical reactions spontaneously encodes information processing.

hese results stem from investigations scattered over diferent ields of biological research involving, for 
instance, inter-cellular8,12 and intra-cellular signalling5,10,13, enzymatic cycles7, ribo and toggle switches4,14–17, 
ultra-sensitive mechanisms18–20, DNA-computing13,21, transcriptional and regulatory networks22–24, and more.

he theoretical description of such systems is typically based on stochastic approaches, e.g., Fokker–Planck 
equations suitably adapted to the cases of interest, leading to the chemical extension of the master equation 
approach (see e.g. refs 9,24 and 25 and references therein).

Restricting to steady states, an alternative approach relies on statistical mechanics, as suggested by C.J. 
hompson in his seminal work26. Indeed, statistical mechanics turns out to be particularly efective for the 
description of universal behaviors of a wide range of biological systems (from the extra-cellular level of neural27–29 
or immune networks12,30,31, to the intracellular level of gene regulatory and protein networks30,32,33). Moreover, 
as recently observed in the case of large systems34,35, the statistical mechanical approach plays the role of a gen-
eral stochastic framework that naturally highlights the structural and conceptual analogies between response 
functions in biochemical reaction kinetics and transfer functions in cybernetics (see Figs 1 and 2), thus tacitely 
working as a translator between these two worlds, that is crucial to show how information is handled by these 
biochemical systems.

However, the current research in biochemical information processing has been recently attributing particular 
importance to systems involving a relatively small number of units and this implies that the standard statistical 
mechanical picture, given in the thermodynamic limit (where the role of intrinsic noise can be suppressed36), is 
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not accurate. One of the goals of the present work is to extend the theoretical framework developed in refs 34 and 
35 to allow for the description of systems of inite sizes.

Before proceeding it is worth stressing that the statistical mechanical description of chemical kinetics pursued 
here is based on the canonical ensemble and it is accomplished at the mean-ield level. his is therefore clearly dif-
ferent from the statistical mechanical description based on the gran-canonical ensemble introduced in the 70’s 37. 
he advantage of the present formulation is that the use of a canonical framework allows us to establish structural 
bridges between the phenomenology of these bio-chemical systems on one side and the well-consolidated theory 
of information processing systems (i.e. cybernetics) on the other side, since the latter (inlected for instance in 
terms of neural networks and learning machines) is mainly developed within the canonical formalism28.

Along the same line we choose to adopt the mean-ield perspective: admittedly, this implies a cost (as we give 
up a detailed description of the true architecture of the system under consideration and we deal with efective 
parameters to be properly renormalized), yet the reward lies in the possibility to directly compare the emerging 
response functions with transfer functions in cybernetics and therefore to understand how information is pro-
cessed through a given reaction. Further, trough direct calibration of the re-normalized key parameters over a 
small subset of data, the whole theory become of immediate experimental applicability.

Let us now present in more detail the statistical-mechanical framework adopted in this work and the results 
we obtain through this path. We consider large macromolecules (e.g., polymers, proteins, etc.), whose binding 
sites are dichotomic variables (Boolean logical operators to be thought of as Ising spins) that can be either empty 
or occupied by a ligand (e.g., a substrate): the log-concentration of free ligands plays the role of the external ield 
in spin systems. he binding sites are not necessarily independent: in the special case where they are independent 
the emerging kinetics follows the so-called Michaelis—Menten law, and this is naturally captured by the lack of 
interaction between spins within the statistical mechanical route of formalization. On the contrary, if there is 
interaction, the kinetics can be cooperative (for positive values of the interaction), or anti-cooperative (for neg-
ative values of the interaction), and these behaviors are typically coupled to various names, e.g., Hill, Koshland, 
and Adair reactions, etc. (see e.g. ref. 37). More precisely, binding sites with identical structure/function (e.g., 
the four oxygen-capturing arms of the hemoglobin) are modeled as a unique spin system, where each spin feels 
the external ield (the oxygen log-concentration in this example) and interacts imitatively with other spins; con-
versely, binding sites with diferent structure/function are modeled as a spin system fragmented into more parties, 
where spins belonging to diferent parties compete to bind the ligand by anti-imitative interactions (e.g., for the 
two insulin-capture α-subunits in the insulin receptor, the system describing the receptor is split into two main 
parties -i.e. arms—that anti-cooperate). his scheme naturally leads to a statistical mechanical scenario consisting 
in multi-partite spin systems (on which—in turn—there has also been recent interest in the Statistical Mechanical 
community38–43), with (positive or null) intra-party interactions and (positive or negative or null) inter-party 
interactions; we will focus on the two-party case, as schematized in Fig. 3. he behavior of this system in the pres-
ence of an external magnetic ield h (i.e., the input) can be captured in terms of the average magnetization m (i.e., 
the output), which keeps track of the underlying collective features among spins. From a kinetics perspective, the 

Figure 1. Behavioral and formal analogies highlighted and exploited in this work. Let panel: the whole 
logical procedure to understand information processing during chemical reactions is schematically shown. 
(a) We deal with a problem in biochemistry. (b) hen we model it into a statistical mechanical framework, 
that (c) it is then solved via techniques of analytical mechanics and (d) whose results are inally interpreted in 
cybernetical/electronical terms. hese indings can be further translated back into the biochemical scenario, 
whose modus operandi has now become transparent. Right panel: Relevant behavioral analogies in the response 
of these saturable diferent systems lie at the basis of the structural equivalence we use and celebrated examples 
are reported. (a) he sigmoidal shape of the transfer function of an operational ampliier, where the response 
is the output voltage while the stimulus is the input voltage. (b) he sigmoidal shape of the self-consistency of 
a ferromagnet, where the response is the magnetization and the stimulus is the external magnetic ield. (c) he 
sigmoidal response of the activation function of a neuron where the output is the action potential voltage while 
input is conveyed by all the aferent electric synaptic currents. (d) he sigmoidal shape of the saturation curve 
of a cooperative chemical reaction, where the output is the fraction of bound sites, while the input is the (log-)
concentration of the ligand.
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function m(h) recovers the saturation function of a system of binding sites as the concentration of free ligands is 
tuned. he isotherm of the magnetization and the saturation function are just two diferent inlections of the same 
transfer function, namely of the same input-output relation.

In this paper the exact, explicit, solution of these magnetic systems (and of the reaction kinetics they code for 
too) is given also at inite volumes. In particular, we derive a set of linear multidimensional partial diferential 
equations for the partition function of the bipartite spin model which are valid for any (either inite or ininite) 
number of spins N. he solution for the model is speciied via a suitable initial datum. We show that in the ther-
modynamic limit N →  ∞  the free energy related to these systems fulils a set of Hamilton–Jacobi type equations 
that is completely integrable by the characteristics method and we provide the explicit solutions in terms of partial 
magnetizations, which in turn satisfy a set of two coupled equations of state. Via this route, the way these reac-
tions handle information processing becomes transparent; such equivalence is summarized in Fig. 2 by means of 
illustrative examples.

Once wrote the general theory, at irst we successfully compare the expected behavior of our theoretical sat-
uration function with experimental results for several examples of cooperative, anticooperative and ultrasen-
sitive kinetics of large systems: we show that the key parameters of the theory match -always with remarkable 

Figure 2. his igure summarizes the structural analogy between biochemical and electronic information 
processing. In the top-line three diferent proteins are shown: from let to right, the irst (mitogen-activated 
protein kinase 14) obeys cooperative kinetics, the second (calmodulin dependent protein kinase 2) ultra-
sensitive kinetics, while the last (synaptic glutamate receptor) fulills anti-cooperative kinetics. In the second 
row the saturation curves for these proteins are shown: α is the concentration of the free ligand needed for their 
binding and Y is the fraction of occupied binding sites. Symbols with the relative error-bars stand for real data 
taken from20,66,67 and lines are best its performed through the analytical expression in Eq. (17), where the best-
it coeicient J corresponds to an ergodic ferromagnet (let), a low-temperature ferromagnet (center) and an 
anti-ferromagnet (right). In the third row three circuits are shown. From let to right, an operational-ampliier, 
an analog-to-digital converter and a lip-lop, while in the fourth row their transfer functions are presented to 
highlight the behavioral analogy with the proteins. he latter shows the response of the system (output voltage) 
as a function of the input of the system (input voltage). Following columns instead of rows, the irst column is 
due to cooperative behavior, the second to ultrasensitive behavior and the last to anticooperative behavior. he 
authors are grateful to Nature Publishing Group for the permission to reproduce this igure from34.
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accuracy- the standard empirical indicators (e.g., the coupling constant used in the Hamiltonian spin-like rep-
resentation of the reaction recovers the Hill coeicient of standard kinetics literature).

hen, we proceed by considering small systems (i.e. away from the thermodynamic limit) and we show that 
the solution at inite sizes can still be obtained explicitly (by separation of variables once an Ansatz on the initial 
state is given): the framework obtained in this way is used to explore and address several phenomena recently 
highlighted in the experimental literature on small system’s kinetics (e.g., we recover that systems devoiding of 
cooperativity can still display a cooperative-like behavior and, possibly, bistability phenomena due to stochastic 
efects, as for instance discussed in ref. 44).

he paper is organized as follows. First, we provide a brief survey of the statistical mechanical formulation of 
reaction kinetics as proposed by hompson in ref. 26 and later developed in refs 34 and 35. hen, we derive dif-
ferential identities for the partition function and the free energy related to these models and construct their solu-
tions both in the thermodynamic limit and for small systems. Next, we discuss implications of our theory such 
as noise-induced cooperativity and bistability, signal ampliication and noise suppression. Finally, we summarize 
and comment on our results and discuss further outlooks.

Results
Standard chemical kinetics: statistical mechanical formalization and cybernetic interpretation.  
Hereater we review main concepts of chemical kinetics, statistical mechanics and cybernetics, which we will be 
needed in the following; we refer to classical textbooks for a more extensive treatment (see e.g. refs 36,45–48).

Chemical-kinetics framework. In many macromolecules (i.e. polymers, proteins, etc.) ligands bind in a 
non-independent way. In particular, if, upon a ligand binding, the probability of further binding (by other lig-
ands) is enhanced, as for example in the paradigmatic case of hemoglobin26, the system is said to exhibit positive 

Figure 3. Schematic representation of the processes considered. he cooperative case is shown in the let 
side, while the anti-cooperative case is shown in the right side. Two diferent binding sites, corresponding to 
two spins belonging to diferent parties, are shown in diferent colors. he cooperative case is characterized by a 
Hill coeicient nH larger than 1, corresponding to a positive coupling J between spins. he anti-cooperative case 
is characterized by a Hill coeicient nH smaller than 1, corresponding to a negative coupling J between spins. 
he input of the system is provided by the concentration of free ligand α, corresponding to the magnetic ield 
h (more precisely, h =  1/2log(α/α0), where α0 is the half-saturation concentration, in such a way that a negative 
ield is equivalent to a concentration smaller than α0 and vice versa). he output is provided by the saturation Y, 
corresponding to the magnetization m (more precisely, m =  2Y −  1, in such a way that the mean performed over 
the magnetizations of the two parties is equivalent to the sum of the saturations pertaining to the two binding 
sites minus 1). he plots in the bottom represent the evolution of the output as the input is varied. In particular, 
the curves shown here are obtained as the solution of Eq. (17) for J =  0.5 and J =  − 1.2, respectively.
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cooperativity; viceversa, cooperativity is negative where further binding of ligands is inhibited49 as in the case of 
some insulin receptors50 (see Fig. 3 for a schematic representation). Fundamental mechanisms underlying coop-
erativity depend, in general, on the microscopic details of the system under consideration. For instance, in the 
case of polymers, if two neighbor docking sites bind charged ions, the electrostatic attraction/repulsion may be 
responsible for positive/negative cooperativity.

In complete generality, let us consider a model where several identical hosting (macro)-molecules P can bind 
overall N identical small molecules S (whose concentration is denoted by [S] ≡  α) on their structure; calling Pj the 
complex of a molecule P with j ∈  [0, N] molecules attached, at the chemical equilibrium we have

α + 







.− P Pj j1

For the sake of simplicity, let us consider the case j =  1. he time evolution of the concentration [P0] of the 
unbound protein P0 is governed by the equation

α= − ++ −

d P

dt
K P K P

[ ]
[ ] [ ],

(1)
0

1
(1)

0 1
(1)

1

where 
+ −K K,1
(1)

1
(1) are, respectively, the forward and backward rate constants for the state j =  1, and their ratio 

deines the association constant ≡ + −K K K/(1)
1

(1)
1

(1). In the steady state d[P0]/dt =  0, we have

α
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P

P
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[ ]
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For generic j >  0 we have

α
=
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
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.
−
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Therefore, in general, one can write [P1] =  [P0]K(1)α, [P2] =  [P1]K(2)α =  [P0]K(1)K(2)α2, and, by extension, 
α




= ∏ =P P K[ ]( )j i

j i j
0 1

( ) . In many practical situations, a direct measure of [Pj] is not feasible. A convenient 

experimental observable is then given by the average number S of ligands that, at the equilibrium, are bound to 
the macromolecule(s) and this is given by

α α α
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he last expression in the previous equation is the well-known Adair’s equation36, obtained by iterating the 
relation (2).

In this work (as standard) we will focus on the normalized version of S, called saturation function Y and 
deined as

= .Y
S

N (4)

Unless otherwise stated, Y represents the expected fraction of occupied sites in the whole set of molecules P under 
investigation, namely the global system’s response (i.e. the output signal) to the stimulus provided by the ligand’s 
concentration α (i.e. the input signal).

In a non-cooperative system, one expects independent and identical binding with microscopic association 
constant K, and one can write K(j) =  (N −  j +  1)K/j. In this case, Adair’s equation (3) for S and Y reads as

α

α
=
+

S
NK

K1
,

(5)

α

α
=
+

.Y
K

K1 (6)

he latter expression is the well-known Michaelis–Menten equation36.
Clearly, the kinetics becomes far less trivial as soon as interactions among binding sites occur. For the sake of 

simplicity, if we consider the limiting case where intermediate steps can be neglected, i.e.

α + P P[ ] [ ],N0

we get that
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α

α
=
+

.Y
K

1 (8)

N

N

More generally, accounting also for some degree of sequentiality36, one obtains the well-known Hill’s equation

α

α
=
+

Y
K

1
,

(9)

n

n

H

H

where nH, referred to as Hill coeicient, represents the efective number of interacting binding sites. We note 
that, by posing nH =  1, equation (9) recovers the Michaelis–Menten law (6). In fact, in the non-cooperative case, 
the number of binding sites efectively interacting is just one (i.e., there are no true interactions). For nH >  1 the 
kinetics is said to be cooperative, while for nH <  1 it is said anti-cooperative. If nH >  1 the kinetics is said to be 
ultra-sensitive.

Given a set of experimental measures of the saturation function Y(α), nH is estimated as the slope of  
|log[Y/(1 −  Y)] versus α, measured at half-saturation (namely, when Y =  1/2).

he statistical mechanics formalization. Statistical mechanics can provide a convenient language to describe bio-
chemical kinetics and frame it into a (noisy) logical scafold (see refs 34 and 35 for details). In the present section 
we briely review how main concept of mean-ield cooperative statistical mechanics (i.e. ferromagnetism) apply 
to the scenario of cooperative reaction kinetics.

We start from the microscopic model described above, consisting of an ensemble of identical macromolecules, 
carrying overall N binding sites labeled by i =  1, 2, … . Macromolecules are in a solution with smaller molecules 
(the substrate) and each binding site can accommodate only one molecule of the substrate. Notice that, following 
the mean-ield approach, here we do not distinguish binding sites belonging to the same molecule, but we are 
treating the whole set of binding sites, pertaining to the whole set of molecules, at once.

Let us associate to each binding site an Ising spin σ where σi = + 1 if the ith site is occupied and σi = − 1 if it is 
empty. A particular coniguration of the system is speciied by the set {σ}, through which all the classical observ-
ables can be introduced. For instance, the magnetization is deined as σ σ= ∑ =m N({ }) ( )/i

N
i1  and is directly 

related to the occupation number S of binding sites by

∑σ
σ

σ=
+

= +

=

S
N

m({ })
1

2 2
[1 ({ })],

(10)i

N
i

1

in such a way that the saturation function (in terms of the magnetization) reads as

σ
σ σ

= =
+

.Y
S

N

m
({ })

({ }) 1 ({ })

2 (11)

For simplicity, we irst consider a system which does not exhibit collective behavior, that is, no interaction 
between binding sites is present and only the interaction between the binding sites and the ligand occours. he 
external ield in statistical mechanics, namely a scalar parameter h, is introduced as the log-concentration log(α) 
of free-ligand molecules26. As there are no spin-spin interactions, this system is mapped into a system of free spins 
σ thermalyzing in the presence of a magnetic ield h and whose energy function (or Hamiltonian) is given by

∑σ σ= − .
=

H h h({ }, )
(12)i

N

i
1

Note that h is assumed to be independent of the site index, meaning that binding sites interact uniformly and 
independently with the ligands; this also means that the time-scale for difusion is fast with respect to the time 
scale for thermalization.

Once the Hamiltonian representing the model under investigation is deined, we can apply the standard sta-
tistical mechanics machinery, namely the Maxwell–Boltzmann probability distribution P({σ}) associated to a 
generic system state {σ}

∑σ = =
β

σ

β
−

−P
e

Z
Z e({ }) ,

H
H

{ }

2N

where Z is the normalization, called partition function and β tunes the level of noise in the system, in such a way 
that for β →  0 the probability measure becomes lat and every state assumes the same chance to happen, while for 
β →  ∞  the system collapses in conigurations corresponding to the minima of the Hamiltonian.

hroughout the paper, given a generic function of the spins f(σ), the bracket averages 〈 f(σ)〉  represent the 
averages over the Maxwell–Boltzmann probability distribution.

An explicit evaluation of the partition function Z allows for a direct measurement of the free energy F related 
to the model encoded by H, that is, F =  (1/N)lnZ (notice that, in our derivation, just for mathematical conveni-
ence we work with the negative free energy = −F N Z(1/ )ln ; hence, max(F) just corresponds to Fmin( )). In 
general, F depends on the system coniguration {σ} and on the system parameters, namely the external ield, the 
level of noise, and the possible coupling between spins. Once these parameters are set, the maximization of F 
provides the related equilibrium state(s). his is because the free energy F is nothing but β= − +F U S , where 
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 = H  is the internal energy of the system (i.e. the Maxwell—Boltzmann average of the Hamiltonian at given 
noise β) and  σ= − Pln ({ })  is the entropy, thus, maximizing F implies looking for the minimum of   and, 
simultaneously, the maximum of   (at given β).

In particular, for the system described by the Hamiltonian (12), the energy is minimized by those conigura-
tions where spins are aligned with the external ield. hus, in the absence of any source of noise, the system relaxes 
to a state where 〈 m〉  =  1 (i.e., σi =  +  1,  ∀  i) if h >  0, or to a state where 〈 m〉  =  − 1 (i.e., σi =  − 1, ∀  i) if h <  0. In the 
presence of noise the equilibrium state requires, beyond energy minimization, also entropy maximization: setting 
for simplicity β =  1 (without loss of generality since this is equivalent to rescale h →  hβ) one can ind that the 
equilibrium state corresponds to =m htanh( ) (see e.g. ref. 46).

Actually, one could reach the same result without relying on statistical mechanics, as explained hereater. 
First, we need to relate h to the ligand concentration α. As mentioned above, the energy is minimized by those 
conigurations where spins are aligned with the external ield: if h >  0 molecules tend to bind to diminish energy, 
while if h <  0 bound molecules tend to leave occupied sites; this suggests that h plays the role of the chemical 
potential for the binding of the ligand molecules on the docking sites. Moreover, as observed in refs 26,34 and 
35, the chemical potential can be expressed as the logarithm of the concentration of the substrate, upon proper 
normalization, namely

α

α
=











h

1

2
log ,

(13)0

where α0 stands for the value of ligand concentration such that binding sites have the same probability of being 
occupied or unoccupied.

Crucially, under the mean-ield approximation (and this is the only case, apart from linear chain models 
which, still, do not exhibit phase transitions and are of moderate interest), the probability P({σ}) of the conigura-
tion {σ} can be factorized as σ σ= ∏ =P P({ }) ( )i

N
i1 . One can therefore focus on the single-spin probability and, 

following26, state that P(+ 1) is proportional to the concentration α and that P(− 1) is proportional to the inverse 
of the concentration α, that is, P(+ 1) =  Ce+h and P(− 1) =  Ce−h, where C is ixed in such a way that P(+ 1) + 

  P(− 1) =  1, i.e. C =  1/(2cos h(h)). hen, the expression σ σ=P h h( ) exp( )/[2 cos h( )]i i  implies that

∑∏ σ σ= = .
σ =

m h P h( ) ( ) tanh( )
i

N

i i

{ } 1

Exploiting this result the average saturation function (see Eq. (11)) reads as

α = + .Y h( )
1

2
[1 tanh( )]

(14)

Using Eq. (13), and recalling that tanh(x) =  [exp(2x) −  1]/[exp(2x) +  1], it is immediate to check that Eq. (14) 
coincides with the Michaelis–Menten equation (6) with the particular choice K =  1/α0. his is perfectly consistent 
with the underlying assumption of independent binding sites (i.e. no couplings among spins) tacitly made when 
we deined the system under study, via the Hamiltonian (12).

Let us now generalize this scenario by introducing the simplest possible two-body interaction given by the 
Hamiltonian

∑ ∑σ σ σ σ= − − .
=

H h J
J

N
h({ }, , )

2 (15)i j

N N

i j
i

N

i
,

,

1

he Hamiltonian (15) represents the well-known Curie–Weiss theory of ferromagnetism46. he irst sum in 
the right hand side of (15) accounts for all possible N(N −  1)/2 interacting pairs of spins and the coupling is 
homogeneous as the constant J is the same for all pairs. If J >  0 the conigurations where spins are aligned are 
more favored thus this choice naturally leads to a theory for cooperative kinetics, while J <  0 favors the conigu-
rations where spins compete and are misaligned thus working for the anti-cooperative case. Clearly, models with 
diferent values of J represent diferent chemical systems.

As well known, the condition of minimization for the Curie–Weiss free energy in the thermodynamic limit 
N →  ∞ , yields the so-called self-consistency equation (see e.g. ref. 46)

β β= + .m J m htanh[ ] (16)

Recalling the mapping (11), and reabsorbing β by the rescaling βJ →  J and βh →  h, the previous equation trans-
lates into the reaction kinetics vocabulary as

α
α

α
=







+









− +

























.Y J Y( )

1

2
1 tanh (2 1)

1

2
log

(17)0

Eq. (16) implies that, at low noise levels, the Curie–Weiss model exhibits an abrupt change in the magnetiza-
tion as a function of h. More precisely, a second order phase transition occurs at h =  0 (i.e., α =  α0) so that m, and 
then Y, is continuous while its derivative diverges as a function of J at the critical value Jc =  1. he phase transition 
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is irst order if, at ixed J >  Jc, m (and then Y), is viewed as a function of h. In this case, for J >  Jc, a jump occurs at 
h =  0 and the reaction is ultra-sensitive (its transfer function mirrors that of an ON/OFF switch).

As a robustness check, we verify that, in the absence of interaction, the model is consistent with the classical 
Michaelis–Menten kinetics. Indeed, Eq. (17) can be written as

α
α

α α
=

+

−

−
Y J

e

e
( ; ) ,

(18)

J Y

J Y

2 (2 1)

0
2 (2 1)

and, setting J =  0, the equation above clearly reduces to Eq. (6) with α= −K 0
1. In this case, no phase transitions 

occur and the model turns out to be not suitable to describe complex biochemical reactions.
As anticipated, in order to provide a quantitative information about how a system actually departs from 

the simplest Michaelis–Menten framework, the so-called Hill coeicient is introduced, deined as the slope of  
log[Y/(1 −  Y)] versus α, which can be recast as

α
=

−

∂

∂
=
−

=

n
Y Y

Y

J

1

(1 )

1

1
,

(19)
H

Y 1/2

where the last expression was obtained using Eq. (17). It is straightforward to check that the Hill coeicient for the 
Michaelis–Menten model, obtained for J =  0, is nH =  1 as expected. On the other hand, a positive value of J implies 
a positive cooperativity and the closer J is to the critical value Jc =  1 (from below) and the stronger the cooperativ-
ity exhibited by the system; values of J larger than 1 correspond to discontinuous saturations (i.e. systems showing 
ultra-sensitive responses).

We stress that the relation (19) provides a crucial link between the experimentally accessible quantity nH and 
the theoretical parameter J, namely the coupling strength of the underlying mean-ield spin description.

We inally observe that small-coupling expansions of the right hand side of (17), or, equivalently, of (18), 
lead to suitable polynomial approximations for the saturation function to be possibly compared with formulas 
obtained through classical (usually ODE-based) phenomenological approaches in chemical kinetics37. For exam-
ple, the irst order expansion of the expression (18) around J =  0 gives

α
α α

α α
≈

− +

+ − +
Y

J

J
( )

(1 )

1 2(1 )
,

(20)

2

2

which is equivalent to Adair’s equation (3) provided that = −J K K(1 /2)(1)3 (2)  along with the rescaling 

α α→ K K/ (1) (2).

he cybernetic interpretation. he cybernetic interpretation of chemical kinetics, extensively treated in refs 34 
and 35, is based on the behavioral analogy between the saturation curves (or binding isotherms) in chemical 
kinetics, the self-consistencies (i.e. state-equations) in statistical mechanics and the transfer functions in elec-
tronics, see Fig. 2. Similarly to saturation curves, self-consistency functions and transfer functions are nothing 
but relations between an input (the ligand concentration α in chemical kinetics, the magnetic ield h in statistical 
mechanics and the input voltage Vin in electronics) and an output (the saturation function Y in chemical kinetics, 
the expected magnetization 〈 m〉  in statistical mechanics and the output voltage Vout in electronics).

As an illustrative example, let us consider the paradigmatic operational ampliier. In a regime of small input 
voltage Vin, the output voltage Vout, is described by the following transfer function

= = +V GV R V(1 ) , (21)out in 2 in

where G =  (1 +  R2) is referred to as gain of the ampliier and R2 is the feed-back resistor (allowing for true ampli-
ication as, if R2 =  0, then G =  1), as shown in Fig. 2 (let column). Similarities between this response function and 
the saturation curve in chemical kinetics can be clariied, using the statistical mechanics formalism, by compar-
ing the mathematical structure of the response of these systems, namely comparing Vout in (21) with the average 
magnetization 〈 m〉  of a ferromagnet in the linear regime [where x =  (J〈 m〉  +  h) is small such that tanh(x) ~ x]:

= + ≈ + ⇒ ∼ − .−
m J m h J m h m J htanh( ) (1 ) (22)

1

Observing that, for J <  Jc ≡  1, the Hill coeicient (19) can be approximated as nH =  1/(1 −  J) ~ (1 +  J), we can write

= +V R V(1 ) , (23)out 2 in

= + .m J h(1 ) (24)

he conceptual term-to-term identiication between inputs and outputs of the above transfer functions sug-
gests that the Hill coeicient can be interpreted as the gain factor for the reaction (and we can already see why 
cooperativity is needed to amplify biochemical signals, as we require J >  0). Let us also note that Hill coeicients 
are typically of order ~10 or less, and this contributes to explain why ampliication of biochemical circuits is 
rather low51 if compared to its electronic counterpart, where the gain can be of several orders of magnitude47.

We emphasize that this behavioral analogy between biochemical kinetics, statistical mechanics and electron-
ics goes far beyond the linear regime exploited above because all the related response functions (i.e. binding 
isotherms, self-consistencies and transfer functions), far away from the linear regime, display intrinsic saturation 
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efects (see Fig. 1. right panel): roughly speaking, if all the macromolecular binding sites are occupied, no matter 
how further we increase the ligand concentration, the system will not vary its response that is already maximal. 
he same applies to spin systems as, once all the spins are aligned with the magnetic ield, a further increase in the 
latter can not produce any shit in the system’s response and the same holds for operational ampliiers too as, once 
the output voltage reaches the collector tension, any further increase in the input voltage will no longer produce 
a variation in the response.

Moreover, apart from the operational amplifier, also other devices naturally fit the picture provided for 
describing biochemical reactions in diferent regimes. For example, if J >  Jc (i.e., nH ≫  1 and G ≫  1) the expected 
magnetization m(h) as well as the saturation function Y(α) develop a discontinuity at h =  0 and α =  α0 respec-
tively (and we refer to ultra-sensitive kinetics in biochemistry and irst-order phase transitions in statistical 
mechanics). he corresponding limit for the operational ampliier is the analog-to-digital converter (ADCs) at 
Vin =  0 (see Fig. 2, center column).

Another example is given by the simplest bistable lip-lop, constituted by two saturable operational ampliiers 
reciprocally inhibiting, in such a way that the output of one of the two ampliiers is used as the inverted input of 
the other ampliier: this is the simplest 1-bit memory device as it is possible to assign a logical 0 (or 1) to one state 
and the other logical 1 (or 0) to the other state. As the two operational ampliiers (i.e. the two parties) interact 
inhibiting reciprocally, the translation of this circuit into a chemical circuit will require anti-cooperativity among 
the two parties, thus will be naturally accounted when anti-cooperativity is at work (see Fig. 2, right column).

When dealing with more complex reactions, such as reactions involving several components and several steps, 
our approach allows to recognize the various basic ‘devices’ at work and to build the whole circuitry in a cascade 
fashion so to igure out how the equivalent ‘electronic circuit’ efectively processes information as the reaction 
goes by. In particular, a suitable combination of the elementary bricks described above leads to the construction 
of (bio-)logic chemical gates, as discussed in ref. 35.

Here, rather than exploring further that route, we keep the focus on the outlined fundamental bricks and 
analyze their behavior away from the thermodynamic limit.

the mechanical formulation of chemical kinetics. The analogies between the saturable systems 
described in the previous section have been developed in ref. 34 restricting to the thermodynamic limit. his is a 
plausible regime for experiments involving extensive solutions of reactants and, indeed, the thermodynamic limit 
underlies also standard approaches in early modeling (e.g., classical chemical-reaction kinetics)24,49,52,53. However, 
thanks to novel experimental breakthroughs, inally a number of recent studies involves only small numbers 
of molecules thus questioning the validity of any description in terms of such a large scale limit54. his broad 
class of novel experiments includes toggle switches4,44,55, stochastic bistability8,22,23, reactions with noise-induced 
cooperativity9,10,14 and the whole quorum sensing12,25,56,57, just to cite a few: interestingly, these novel experiments 
in small systems have highlighted such complex behaviors which can not be recovered from theories based on 
the thermodynamic limit. Scope of the current section is thus to extend the mapping described in the previous 
section in order to include small systems as well. his will be obtained in two steps. First, we need to frame the 
whole statistical mechanical treatment of chemical kinetics into the mathematical scafold of classical mechanics; 
the latter, extensively relying on non linear PDEs techniques, allows for an optimal mathematical control of these 
systems at inite sizes58–62. hen, through this route, we extend the statistical mechanical treatment of reaction 
kinetics even to the case of inite systems and solve for the latter. Finally, we check the overall robustness of our 
theoretical predictions by recovering these novel outlined phenomena.

In the following we irst present the general mapping, then we handle the simpler case N →  ∞  to check that 
the known limit is properly recovered, and inally we address the inite-N case in detail. We emphasize that, in 
both the regimes, the model is exactly solvable as a consequence of the complete integrability of the PDEs derived 
for the partition function and the (related) system’s free energy.

he diferential identities for the partition function. Let us consider the statistical mechanical formulation of a 
system where binding sites are of two kinds and evaluate the exact partition function and the related free energy 
in the thermodynamic limit (N →  ∞ ) and in the case of inite volumes (N ≪  ∞ ). he present theory can be 
straightforwardly extended to account for an arbitrary number of diferent binding sites38–40 and to address chain 
reactions (whose implementation can be helpful in several biochemical information processing systems21,51).

he general model we consider is described by a Hamiltonian of the form

∑∑ ∑ ∑∑ ∑ ∑σ τ σ σ τ τ σ τ= −








+ + + +



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
= = = = = = =
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N
h h ,
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i j
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i j A
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N

i B
i

N

i
1 1 1 1 1 1 1

A B A B B A B

where σ and τ are Ising spins associated to the binding sites of type A and B respectively, JAB, JAA, JBB are the 
pairwise-coupling constants between sites (of type A and type B, both of type A, both of type B, respectively), and 
the external ields hA and hB correspond to the chemical potentials associated to the party A and to the party B, 
respectively. he overall number of sites is N =  NA +  NB, in such a way that, setting γ =  NA/N, we have

γ γ= = − .N N N N, (1 )A B

he relative magnetizations are deined as

∑ ∑σ τ= = .
= =

m
N

m
N

1
,

1

(26)
A

A i
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i B
B j

N

j
1 1

A B
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he partition function for the system can then be written as

∑∑ ∑∑= = + + + +

σ τ

β

σ τ

−Z e N t m t m m t m x m x mexp{ [ ]}
(27)

H
A A AB A B B B A A B B

{ } { } { } { }

2 2 2

where we have deined

γ β γ γ β γ β γ β γ β= = − = − = = − .t J t J t J x h x h, (1 ) , (1 ) , , (1 )A AA AB AB B BB A A B B
2 2

By direct diferentiation one can immediately verify that Z satisies the following set of compatible PDEs
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Based on formula (27), it can be proven that the solution Z(xA, xB, tA, tAB, tB) must satisfy the initial condition
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he free energy F of the system, deined as =F Zlog
N

1 , consequently fulils the set of equations
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with initial condition F0(xA, xB) =  F(xA, xB, tA =  tB =  tAB =  0), where

γ
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he thermodynamic limit. In this section we evaluate the free energy and the equations of state for the bi-partite 
system (25) in the thermodynamic limit N →  ∞ , where the limit is taken keeping the ratio γ =  NA/Nconstant (that 
is, none of the two parties is negligible w.r.t. the other). Hence, neglecting O(1/N) terms in equation (30), we have 
the following system of PDEs

∂

∂
=





∂

∂







∂

∂
=





∂

∂







∂

∂
=
∂

∂

∂

∂
.

F

t

F

x

F

t

F

x

F

t

F

x

F

x
, ,
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2 2

he equations above are expected to provide an accurate description of the thermodynamic solution within 
regions of thermodynamic variables {xA, xB, tA, tAB, tB} such that the second order derivatives in equation (30) 
are bounded. We observe that the system of equation (32) is a completely integrable set of Hamilton–Jacobi type 
equations and the general solution can be calculated via the method of characteristics (see e.g. ref. 63). Hence we 
ind that the general solution can be written as follows

= + + + + −F m x m x m t m m t m t w m m( , ) (33)A A B B A A A B AB B B A B
2 2

where 〈 mA〉  and 〈 mB〉  are functions of the thermodynamics variables xA, xB, tA, tAB, tB deined by

=
∑ ∑

=
∑ ∑σ τ

β
σ τ

β− −

m
m e

Z
m

m e

Z
,A

A
H

B

B
H

{ } { } { } { }
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he functions 〈 mA, B〉 (xA, xB, tA, tAB, tB) are obtained extremizing the free energy F(xA, xB, tA, tAB, tB), i.e.
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where the function w(〈 mA〉 ,〈 mB〉 ) is uniquely ixed via the initial condition on 〈 mA〉  and 〈 mB〉 
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By evaluating equation (34) for the function w given in (35), we obtain the self-consistency equations in the 
form
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We observe that the equations of state (34) can be interpreted as the hodograph solution (see e.g. ref. 64) of 
the following set of (1 +  1)-dimensional equations of hydrodynamic type for the partial magnetizations 〈 mA〉  and 
〈 mB〉 
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he set of equations above is completely integrable as directly follows from the equation (32) with
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By diferentiating equations (36), where magnetizations 〈 mA〉  and 〈 mB〉  explicitly depend on x and t variables, 
one can show that all irst and second derivatives
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develop a gradient catastrophe on the hyper-surface
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he solutions t t t m m( , , , , )A
c
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c

AB
c

A
c

B
c( ) ( ) ( ) ( ) ( )  to the algebraic equation (39) are singular points on the space of cou-

pling constants (xA, xB, tA, tB, tAB) where partial magnetizations develop a classical shock. Such shocks, as they are 
known in hyperbolic wave theory, are associated to phase transitions in statistical mechanics39,58,60–62. he equa-
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tion (39) and the self-consistency equations (36) imply that the point of vanishing magnetization 〈 mA〉  =   
〈 mB〉  =  0 develops a gradient catastrophe if

γ γ= ± − − − .t t t(2 )[2 (1 )]AB
c

A
c

B
c( ) ( ) ( )

When addressing the comparison of these outcomes with recent experimental results later, we will be focusing 
on models with no intra-party interactions (zero coupling between spins of the same type), i.e. tA =  tB ≡  0: this 
means that binding sites of the same type neither cooperate nor compete, while interactions between binding sites 
of diferent nature will be retained and can be both cooperative or competitive. In this case the critical point will 
simplify into

γ γ= ± − .t (1 )AB
c( )

By plugging the expression for w appearing in Eq. (35) into the equation (33), the required solution F reads 
as follows
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Recalling (11), the relation between the average magnetizations 〈 mA〉  and 〈 mB〉  and the variables YA, YB is 
given by

= − = − .m Y m Y2 1, 2 1 (41)A A B B

Hereater, in order to lighten the notation, the bracket for YA, B shall be dropped.
Before proceeding it is worth recalling that the free energy can be decomposed into β β= − +F ( ) U S , where 

the energetic and the entropic contribution are highlighted. In particular, the former takes the form

β− = ⋅ − + ⋅ −

+ + + + + − + + + .

t Y Y Y Y

Y x t Y x t t x x t t

2 [ (1 ) (1 )]
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Following the minimum energy principle we look for the states that minimize  . In particular, as long as  
J ≥  0 and hAhB >  0, these states are given by YA =  YB =  1 (if hA, hB >  0) and by YA =  YB =  0 (if hA, hB <  0). Otherwise 
stated, if both the types of binding sites display a positive ainity with the ligand and reciprocal cooperativity is 
either absent or positive, then, according to purely energetic prescriptions, both the types of binding sites tend 
(not) to bind the ligand if its concentration α is (smaller) larger than α0.

Let us now consider the entropic contribution.

γ γ= − + − − − − + − − .Y Y Y Y Y Y Y Y[ ln (1 )ln (1 )] (1 )[ ln (1 )ln (1 )] (43)A A A A B B B B

To see the efect of the maximum entropy principle at work instead, we diferentiate  with respect to both YA and 
YB, and impose the maximum condition, getting YA =  YB =  1/2: as expected, the states favored by the entropic 
term are those corresponding to half saturation for both binding sites (the most disordered states available to the 
system).

In general, when both entropic and energetic contributions are considered, the equilibrium states stem from 
an interplay between the two (as the various parameters are tuned, i.e. the noise level β, the relative size γ of the 
two parties, the half-saturation reference α0, and the strength of the reciprocal coupling JA, JB, JAB).

As anticipated, the maximization of F allows accounting for both extremization and this leads to (see the sat-
uration curves in Eq. (36) and the mapping in Eq. (43))
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hese theoretical behaviors are successfully used to it experimental data from positive-cooperative and 
negative-cooperative systems (see Fig. 4) and they are also tentatively tested on ultra-sensitive kinetics (see Fig. 5), 
although ultra-sensitivity requires particular care because of the breakdown of the self-averaging property of the 
saturation function.

In fact, within the statistical mechanical framework, we know that -away from phase transitions- the magnet-
ization is a self-averaging order parameter, that is, when N →  ∞  the distribution of the magnetization becomes 
delta-peaked on its thermodynamic average value, namely, δ→ −

→∞
P m m mlim ( ) ( )N , while when N is inite 

this distribution is only a Gaussian (still centered on 〈 m〉 ) whose variance vanishes as N grows scaling as N1/ . 
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However, when J →  Jc =  1, namely when the system exhibits a phase-transition (or when a shock develops in the 
language of non-linear waves) the variance diverges as N →  ∞ . In practice, this means that, away from phase 
transitions, − =→∞ m mlim ( ) 0N

2 2  but, exactly on the critical point (i.e. J =  Jc and h =  0), this relation does 
not hold any longer and luctuations in the order parameter grows indeinitely with the size.

Analogous arguments apply to Y as well, since Y and m are linearly related. hen, the criticality (whose signa-
tures emerge even in real systems as N gets large, α =  α0 and J →  Jc) has important consequences also from a prac-
tical perspective. For any J >  Jc, as larger and larger systems are considered, the saturation function Y(α) displays 
a discontinuity at α =  α0: at that point the system jumps from a (almost) empty state to a (almost) fully-occupied 
state (the jump is meant as a real discontinuity of Y(α) at α =  α0 only for N →  ∞  and the degree of occupation 
of the two extremal states depends on the level of noise). he lack of smoothness in the function Y(α) makes 
the application of regression techniques awkward. hus, despite from a biochemical perspective ultra-sensitive 
reactions are only particularly strong cooperative reactions, from a mathematical perspective these two types of 
reactions are actually very diferent.

In the next subsection we will develop the small N theory that ofers a more reined level of description for 
these critical systems, and, in particular, we will succeed in evaluating the “jump” that Y(α) experiences at α =  α0 
at inite volume N using shock theory: this will result in a practical instrument that can be used in modern exper-
iments on small systems reaction kinetics.

Finite-size solution. Here we assume that N is inite and ixed and we study the exact solution of the system (28) 
with the initial condition (29). Let us remark that the initial condition (29) can be equivalently written as

∑ ∑=



















= =

− − − −
Z

N

k

N

l
e e ,

(45)k

N

l

N
A B

N
N

N k x N
N

N l x

0
0 0

( 2 ) ( 2 )A B
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where, we recall, N =  NA +  NB. Observing that the initial condition is separable in the variables xA and xB, we then 
look for separable solutions of the form

Figure 4. Examples of accordance between our theory and experimental results for positive cooperativity 
(let panel) and negative cooperativity (right panel). Let panel: data taken from the work by Watson et al.  
(see Fig. 5 in ref. 68) representing the fractional saturation of immobilized glucocorticoid receptor (GR) surfaces 
at 35°C as the concentration of GR DNA-binding domain (DBD) is varied; three series are considered: WT-Gilz 
(◊ ), A477T-Pal-R (∆ ), and A477T-Gilz (∇ ). hese experimental data are then itted according to Eq. (36). he 
best it coeicients are Jbest−it ≈  0.45 ±  0.06, 0.24 ±  0.04, 0.27 ±  0.04, giving nH ≈  1.82 ±  0.20, 1.32 ±  0.07, 
1.37 ±  0.08 (see Eq. (19)) to be compared with the values ≈nH

lit  1.83 ±  0.28, 1.41 ±  0.10, 1.34 ±  0.16 obtained in ref. 
68 through a standard Hill it. In the right panel we consider three sets of data taken from69,70. Data () taken 
from the work by Garnier et al. (see Fig. 4 in ref. 69) represent the fractional saturation of NAD-dependent 
glutamate dehydrogenase (GDH) from Laccaria bicolor with glutamate as substrate at pH 7.4. hese experimental 
data are then itted according to Eq. (36). he best it coeicient is Jbest−it ≈  −1.6 ±  0.5 giving nH ≈  0.38 ±  0.09 to 
be compared with the value ≈ .n 0 3H

lit . Data (⚬ and ) taken from the work by Glover et al. (see Fig. 1a and 1e in 
ref. 70) represent the amino-acid uptake in B. subtilis strain NP1 against the reciprocal of the concentration of the 
transport substrate given by L-Arginine and L-Phenylanine, respectively. hese experimental data are then itted 
according to Eq. (36). he best it coeicients are Jbest−it ≈  −1.55 ±  0.40, −2.1 ±  0.25 giving nH ≈  0.39 ±  0.06, 
0.32 ±  0.03 to be compared with the value ≈ . .n 0 37, 0 31H

lit . Notice that, in general, experimental data are 
reported as a function of α (which is the convention adopted here as well) and diferent systems display a diferent 
value of α0.
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Substituting the previous expression into the equation (28) we obtain
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In particular, the inite-size magnetizations
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Figure 5. Let: Example of accordance between our theory and experimental results for ultra-sensitive systems. 
Data () are taken from the work by Bradshaw et al. (see Fig. 3 in ref. 20) representing CaMKII auto-
phosphorylation level at equilibrium versus [Ca2 + ]. We report three distinct its: the dark curve refers to 
Eq. (17), strictly valid in the thermodynamic limit, with relatively small coupling constant (i.e., Jbest−it <  1), hence 
recovering a cooperative system in the thermodynamic limit; the steep curve refers again to Eq. (17) where the 
coupling constant is large (i.e., Jbest −  it >  1) in such a way that the response of the system gets discontinuous; the 
bright line refers to Eq. (50) (where only one party is retained) valid for inite-size systems and the coupling 
constant is large (i.e., Jbest−it >  1), hence recovering an ultra-sensitive system of inite size. Notice that in the latter 
case, given the initeness of the system, the discontinuity is smoothened. Indeed, in the language of statistical 
mechanics, a genuine irst order phase transition, is truly captured only in the thermodynamic limit: this mirrors 
an ininite cooperativity in the biochemical counterpart as it returns nH →  ∞ . he relative goodness of the its are 
R2 ≈  0.85, R2 ≈  0.94, and R2 ≈  0.99, respectively, conirming an ultra-sensitive behavior. Right: Finite size scaling 
of the saturation function at diferent sizes (i.e N =  2, 10, 100 and N →  ∞  values are shown) gives useful 
information on the goodness of the numerical implementation of our approach as, for small systems of concrete 
interest (e.g. N <  50), the presented procedure is already feasible on standard machines, while for larger N (e.g. 
N >  O(102)) the inite-size solution already collapses to its thermodynamic asymptotics.
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Notice that, by ixing tA =  t, tAB =  tB =  0, xB =  0 and NA =  N, we recover the inite-size solution to the Curie–Weiss 
model, as expected. Also, it is immediate to recognize that exp[Λ k, l(xA, xB, tA, tB, tAB)]/Z plays the role of the 
inite-size canonical probability for the coniguration with k and l bounded sites out of NA and of NB, respectively 
(corresponding to a magnetizations 2k −  NA and 2l −  NB).

Fitting Eq. (50) on ultra-sensitive kinetics (as shown in Fig. 5) produces sensibly better results than using the 
ininite limit counterpart coded by Eq. 47.

Implications of the theory for small systems. he successful comparison between the experimental sat-
uration plots and the predictions from self-consistencies obtained in the previous section provides a sound check 
of the analogy developed. Now, we aim to go further to recover novel emerging phenomena, whose experimental 
evidence is well documented. In particular, we now focus on cooperative-like and bistable behaviors induced by 
noise and stochastic efects4,8,22,23,44,55. Next, this phenomenology is further investigated in its relationship with 
quorum sensing12 and we will inally ofer a cybernetic interpretation of this kind of process: this will allow us 
to provide a natural and robust explanation about how, during a biochemical reaction, the signal (carried by the 
input) is ampliied, while an eventual noise becomes spontaneously attenuated.

Noise-induced cooperativity and bistability. It is well-known that cooperative binding in real systems (i.e. at inite 
sizes) induces a bistable behavior, which we call cooperativity-induced bistability. On the other hand, growing 
attention has been recently captured by the evidence that bistability can also occur without cooperativity (i.e. it 
may happen in systems whose binding sites do not interact at all, simply as a consequence of the intrinsic stochas-
ticity, see e.g. ref. 44 and references therein). We call this phenomenon noise-induced bistability. Indeed, these two 
kinds of bistability display a signiicant empiric resemblance that makes one speculate that stochasticity can play 
a a role in the efective cooperativity. However, the two phenomena are conceptually diferent, as it can be inferred 
from the present statistical mechanical treatment. he simplest way to do this is by starting from the mono-partite 
system discussed in Sec. 2 and compare the self-consistent expression (17) with the saturation function of coop-
erative systems (9). Both expressions are recalled hereater for clarity:
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Notice that in Eq. (51) the explicit β is retained (i.e., the rescaling βJ →  J and βh →  h is no longer applied) since 
here we are focusing on the role of β.

Now, it is easy to see that stochastic efects may drit the system away from Michaelis–Menten behavior 
(toward a cooperative-like one), even if there is no cooperation among binding sites. In fact, by assuming that the 
coupling is strictly zero, i.e. by setting J ≡  0 in the self-consistency (51), we get
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hence, recalling that = − +r etanh 1 2/( 1)r2 , we have
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he last expression coincides with the Michaelis-Menten law (6) as long as β =  1 and α0 coincides with the 
Michaelis constant (deined as the ratio between dissociation and association constants related to the reaction 
considered, which corresponds to the concentration of the ligand at which the reaction rate is half its maximum 
value). More generally, letting β vary (hence rising or lowering stochastic efects in the system), we can reshule 
the previous expression as

α β
α

α α
=

+

β

β β
Y ( , ) ,

(52)0

which recovers the Hill law (9) as long as we take α= β−K 1
0 . Focusing on the dependence of Y on the concentra-

tion α, we ind that β plays the same role as the Hill coeicient: the smaller the stochasticity (i.e. the larger β) the 
more “cooperative” the system. he reason for this behavior is apparent in the statistical mechanical picture, as 
low levels of noise make the spins of the system align faster (driven by the external ield, rather than by them-
selves) by reducing overall the luctuations. Of course, the displayed behavior depends globally, rather than 
locally, on the system energy, i.e. it may not be ascribed to the mutual interaction of sites, as it is the case for truly 
cooperative systems.
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In Fig. 6 (let panel) we show the qualitative behavior of the saturation function Y as a function of the concen-
tration α and with noise parameter β, according to Eq. (55).

Let us now proceed by showing that noise can even induce bistability. To this aim, we need to extend this 
approach to systems built of by two-parties (namely to the general model coded in Eq. (25)); despite being math-
ematically more involved, the reasoning for multipartite systems goes as much as the same as above. Indeed, 
proiting the mappings (43), the partial saturation curves may be shown to represent Hill law for each party also 
in the case of two (or several) interacting sites.

To see this, let us set
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where αj denotes the concentration of free molecules for the party j =  A, B and α j
0  denotes the reference value 

representing equal probability of being occupied and unoccupied for the party j.
Assuming again J =  0 and NA =  NB =  N/2 for the sake of simplicity, the event of each site being bound (respec-

tively unbound) is independent of the state of the other sites, thus, denoting with σi
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factorizes due to the independence of the probabilities (a major advantage of the mean-ield approach) as
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when ce αtot =  αA ⋅  αB (and the same conclusion may be drawn for the total reference value α tot
0 ). As a conse-

quence of the superposition principle for the external ields and of (13), we then have
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whence, having set NA =  NB, we can put by symmetry (see Eq. (13))

Figure 6.  (Let Panel) Noise induced cooperativity. he saturation function of a single-type site reaction Y(α) 
is shown for various values of the noise β, according to Eq. (55). At high level of noise the Michaelis–Menten 
envelop is preserved (the curve at β =  1/2), while for higher values of β – hence for smaller noises – a sigmoidal 
shape slowly emerges (i.e. for β =  2, 4). (Right Panel) Noise induced bistability. he saturation function of a two-
type site reaction YA(α), YB(α) is shown for various values of the noise β, according to Eq. (56). Again, while for 
small values (i.e. β =  1/2) the system behaves as the superposition of two independent Michaelis–Menten 
reactions, for higher values of β (i.e. β =  4) bistability clearly appears in the system. Here we used αA =  αB and 
α α= = 1/2A B

0 0 .
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Exploiting again the assumption J =  0, that is, in the absence of cooperativity Eq. (47) reads as
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whence, replacing the hyperbolic tangent with its exponential expression, we recover the partial Hill laws
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for the single parties. Notice that, in order for the analogy with eq. (9) to be preserved, the partial Hill coeicients 
coincides now with 2β, rather than β, for each single party consists of precisely one half of the total number of 
spins. his is indeed perfectly consistent with our previous remark on the global dependence on the noise β in the 
case of noise-induced “cooperativity” and is indeed in sharp contrast with the property of the truly cooperative 
behavior to be invariant with respect to the system size.

In order to graphically illustrate the properties of the partial saturation curves Yj with respect to the noise β, 
ix e. g. hA =  hB =  htot/2, so that α α α α= /B A

B A
0 0  and α α α α= ( ) /A

B A
tot

2
0 0 . By ixing a value of αtot (or, which is the 

same, the values of α j
0 ), we can interpret the αj’s to be relative concentrations with respect to αtot, hence rewriting 

YB(αB) =  YB(αtot/αA) ≡  YB(αA) for αA ∈  (0,1). his stochastic-driven behavior for two-party systems is shown in 
Fig. 6 (right panel).

he physical reason for this switches lies in the intrinsic ergodicity of any dynamics involving systems with 
inite size: considering the simplest bistable system, its two free energy minima are separated by a maximum (i.e., 
a barrier) whose height is NδF and the characteristic time τ for the system to move from one minimum to another 
typically scales as τ δ∝ Fexp( ) thus, solely in the thermodynamic limit, this barrier becomes ininite and the 
system gets trapped forever into one of these minima (and ergodicity becomes broken): this is clearly discussed 
from a biochemical perspective in e.g. refs 16 and (and references therein). We checked that our theory correctly 
reproduces these spontaneous switches in time, as reported in Figs 7 and 8 (let panel) where we recover the orig-
inal plots shown44 using the same parameters.

In our vocabulary, this happens because the asymptotic evaluation of the magnetization already for the sim-
plest bistable mono-partite spin model (i.e., a Curie–Weiss model) leads to the expansion of the form
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
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(54)

for large N, where ξ is the solution to the self-consistency equation

ξ ξ= +t xtanh( ) (55)

such that the free energy attains its minimum. Away from the thermodynamic limit, keeping only the irst order 
correction to inite volume, we can approximate

ξ
η

+m
N (56)

and η can be interpreted as a stochastic contribution. Indeed, the magnetization 〈 m〉  has zero-variance in the limit 
N →  ∞  only (or in the pathological case of zero noise η ≡  0). Solving the equation (59) for ξ and substituting in 
(58), we obtain (up to O(1/N))

η
= + + + − .m t m x t tm

N
tanh( ) [( 1) ]2

hus, as shown in Fig. 8 (right panel) a non-vanishing η breaks the symmetry of the isothermal curve for the 
average magnetization 〈 m〉 . In absence of external ield, i.e. x =  0, a positive (negative) value of η selects a negative 
(positive) solution 〈 m〉 , hence random luctuations of η are responsible for possible switches of the magnetization 
thus efective stochastic bistabilities typical of toggle switches.

To further check that our theory correctly reproduces such a lip-lop (i.e. switch) like behavior, we can study 
the null-clines of the simplest Langevin dynamics coupled to our system (25), namely
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Figure 7.  Upper panel: example of historical series for a toggle switch we simulated through a bipartite spin 
system with overall N = 40, NA = NB = 20 and JAB = −2.8, JA = JB = 0. he behavior of this stochastic lip-lop is as 
much the same as that of classical toggle switches, as it is evident comparing this plot with Fig. 3 of44 or Fig 3(a) 
of16. Lower panels: the switching time for various couplings’ strength is analyzed. he complementary of the 
cumulative distribution Cum(τ) is shown in the let for JAB =  −3.0, − 2.8, − 2.7, − 2.5 (ordered from the least to 
the most steep curve). he scaling law τ = a b Nexp( )J J  is checked in the right panel, where, again diferent 
coupling strengths are considered [ = − . ◊ − . ∆ − . − . J 3 0( ), 2 8( ), 2 7( ), 2 5( )AB  ]; to be compared to16 Fig. 3b.

Figure 8.  Let: Temporal behavior of the outputs YA and YB for the two parties. Along the time, the parameters 
J, hA and hB are varied as speciied in the igure. In this way, four distinct regimes can be outlined: at the 
beginning both parties display half saturation and negative cooperation, being subject to small, positive ields 
and, as a result, the output associated to the party experiencing the larger ield grows while the other decreases; 
then, both ields are set to zero and the outputs remains close to 1 and to 0, respectively; next, the coupling 
between the two parties is reduced and the related output collapse to 1/2; now, even if the coupling is restored 
to large, negative values the two outputs remain null. his phenomenology recovers the original picture by 
Gardner et al. (see ref. 6, Fig. 5). Right: First order corrections to the ininite volume expression for the transfer 
function of the Curie–Weiss model: η encodes for random thermal luctuations that, in this context, are not 
washed away and actually break locally (in time) the symmetry between the two free energy minima allowing 
the system to oscillate between them (the stronger the thermal noise the faster the hopping rate between the two 
minima).
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where τ is the typical time constant (see Fig. 7), and the randomness tuned by η is standard white noise, namely 
〈 ηA(t)ηB(t′ )〉  ∝  δ(A −  B)δ(t −  t′ ): keeping CA, and CB to label the two reactant’s concentrations as in the original 
paper22, we can compare the null-clines of our system to those pertaining to the following archetypal toggle
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where we have kept CA and CB to label the un-normalized reactant’s concentrations. he corresponding by now 
well-known results are illustrated in Fig. 9 (lower panel) for the case = =n n 2H

A
H
B .

Letting ≡ − + − +F m m m Jm h m( , ) tanh( )A A B A B A A  (and FB analogously), the system’s (in-)stability at 
equilibria may be checked with the sign of the diferential’s eigenvalues
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an equilibrium point being a minimum (i.e. stable) if both the eigenvalues are positive and a maximum (i.e. unsta-
ble) if both of them are negative, or otherwise a saddle point (unstable) if they are opposite in sign.

Condorcet theory: stochastic signal ampliication and noise suppression. he Condorcet theorem was originally 
stated within a political context and concerns the relative probability of a given group of individuals arriving at 
a correct (binary, i.e. YES-NO) decision. he assumptions underlying the simplest version of the theorem is that 
a group wishes to reach a decision by majority vote. One of the two outcomes of the vote is correct, and each 
voter has an independent probability p of voting for the correct decision. he theorem states that if p >  1/2 (i.e., 
each voter is more likely to vote correctly), then adding more voters to the pool increases the probability that 
the majority decision is correct. In the thermodynamic limit, the probability (that the majority votes correctly) 

Figure 9.  Upper panel: Null-clines of Langevin equations system (60), displaying equilibria and their behavior, 
with varying J. Lower panel: Null-clines of the system (62), roughly displaying the same behavior as (60) (to 
be compared to22, Fig. 2). Notice that in the present case, the concentrations CA, CB are not normalized as they 
previously were, so that, ater a suitable renormalization, the equilibria belong in fact to region  
[0, 1] ×  [0, 1].
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approaches 1 as the number of voters diverges. On the other hand, if p <  1/2 (i.e., each voter is more likely not to 
vote correctly), then adding more voters makes things worse.

Condorcet theorem is therefore a majority rule that can be used as a tool to infer collective reliable predictions 
about the better of two options and, in recent times, deep analogies between Condorcet theory in social systems 
and quorum sensing in biological information processing systems have been developed: for instance, many species 
of bacteria use quorum sensing to coordinate gene expression according to the density of their local population56, 
and decisions within the adaptive response of the immune system in mammals requires the implementation of 
quorum sensing by lymphocytes12,57 (that globally vote if attacking or resting when a novel antigen is presented 
to them and dialogue among themselves respecting the rules of biochemical reactions). In any case, this distrib-
uted decisional capability should emerge as a natural consequence of the underlying reaction kinetics of all the 
involved agents, thus we should be able to understand its genesis from our general treatment.

Note at irst that this mechanism is also consistent with the biologically-adapted18,34 electronic picture of  
signal ampliication and noise suppression (where, in this analogy, the meaning of the signal is the correct vote and 
that of noise is the wrong one) as, actually, this is not too far from the Shannon coding theorem in Cybernetics: 
roughly speaking the latter states that, even if there is a huge noise on a cable (i.e. in the system), it is enough that 
the probability to send successfully a message through it remains strictly greater than one-half to be sure that the 
the whole information that crossed the system cannot get lost (with large enough trial samples N →  ∞ ). Indeed in 
all these saturable systems (as also voter-like models à  la Condorcet are saturable systems by deinition if the vote 
is binary) when collective features are at work, the correct output “yes” emerges neatly even at a relatively mild 
input, and the wrong output “no” is cleverly avoided even in the presence of signiicant noise, as shown in Fig. 10.

his kind of phenomenology is naturally captured within our chemical kinetics framework: in fact, in our 
system the stimulus (i.e., the logarithm of the ligand concentration) is provided by the ield h and, according to 
its efective magnitude, it is expected to return a bound (“yes”) or a not-bound (“no”) state for the ligands such 
that, if the stimulus is poor (i.e., chemical noise), it is suppressed in the output, while if the stimulus is relatively 
consistent (i.e., chemical signal), it gets ampliied in the output, as discussed in detail in Fig. 10. Clearly the 
larger the coupling value J >  0 (or, alternatively, the higher the Hill coeicient of the reaction), the stronger the 
resulting ampliication (see also Eq. (23)). his point is further deepened hereater. If we look at the expression 
for the system’s energy (Eq. (44)), a key point is that when J >  0, the contribution 2JY(1 −  Y) provides a boost 
(i.e. a gain) for the system’s response, further stabilizing the states Y =  0 (for low levels of input -i.e. h <  0-, that is 
interpreted as chemical noise and it is thus suppressed) and Y =  1 (for high level of input -i.e. h >  0-, that is inter-
preted as a chemical signal and it is thus ampliied). he usefulness of this Condorcet-like mechanism at work in 
biochemistry becomes evident already in the paradigmatic case of hemoglobin (a cooperative protein responsible 
for oxygen transport in tissues): when in the lungs (rich of oxygen), hemoglobin uses cooperativity to bind to as 
much oxygen as possible; when in the tissues (poor of oxygen) it uses cooperativity to get rid of it, thus releasing 
oxygen in the tissue.

Discussion
In this manuscript we deepened our translation of biochemical kinetics into a statistical mechanical scafold 
started in refs 34,35 and that allows a straightforward cybernetic interpretation of these phenomenologies. he 
inal goal is to contribute in the quantitative understanding of the emergent computational properties possibly 
shown by large networks of biochemical reactions regarding cell signalling.

he route we paved is based on the one-to-one, robust and sharp, structural and behavioral analogy between 
the response functions in biochemical reactions (i.e. saturation curves), the response functions of mean-ield 

Figure 10.  Let panel: Transfer function for cooperative systems (i.e. chemical cooperative kinetics, physical 
ferromagnets, electronic operational ampliiers). Curves pertaining to diferent interaction strength among 
the system’s units (namely pertaining to a diferent Hill coeicient, or a diferent ferromagnetic coupling, or a 
diferent gain, according to the context considered) are shown in diferent colors. he dashed line highlights 
the linear behavior expected in the region of small signal, namely for a perfect cable. As the interaction strength 
gets larger we eventually get a switch. he Condorcet scenario results in both signal ampliication at high ligand 
concentration as well as noise suppression at low ligand concentration. Right panel: Ampliication scheme. 
In the main plot the linear regime is highlighted. When the input (i.e., the external ield h, let inset) is varied 
within this region the resulting output (i.e., the magnetization m, right inset) varies according to a linear 
relation. Outside the linear regime the input-output relation can exhibit distortions.
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models in statistical mechanics (i.e. self-consistencies), and the response functions of key ampliiers in electron-
ics (i.e. transfer functions). In particular, the response functions of cooperative (anticooperative) systems match 
those pertaining to mean-ield ferromagnets (antiferromagnets), which, in turn, overlap those characterizing an 
operational ampliier (lip-lop).

We decided to keep the discussion at the mean-ield level and in the canonical ensemble because it is within 
these limits that other theories regarding information processing systems (e.g., neural networks in Artiicial 
Intelligence28) have been developed in the past, and it is by comparing our results to these theories that we aim 
to learn how information is treated during biochemical reactions. Notice that, from a statistical mechanical per-
spective, neural networks are particular types of spin-glasses, namely tricky realizations of ferromagnets and anti-
ferromagnets broadly interacting, while from an electronic perspective, neural networks are realized by suitably 
combining large numbers of ampliiers and lip-lops, thus the irst steps in this structural equivalence should 
focus on these basic ingredients, that have been indeed the subject of the present paper.

Moreover, many of the biochemical reactions of current interest involve small numbers of agents and this 
makes theories in the thermodynamic limit54 too coarse for the purpose of tackling the proposed analogy in full 
generality. herefore, in this manuscript we tried to ix this point by developing a proper mathematical technique 
able to account even for small-sized systems.

Summarizing the whole procedure, our route irst requires mapping the original biochemical problem into 
a Hamiltonian formulation; the resulting model can then be embedded into a statistical mechanical framework. 
Next, the solution for this kind of systems is attainable by noting that their related free energies obey Hamilton–
Jacobi type equations in the space of their parameters (ultimately mapping a problem in biochemistry into a prob-
lem of analytical mechanics): relying on the complete integrability of the system of multidimensional PDEs, we 
solve the general scenario in both the thermodynamic limit and the inite size case63. In particular, we observed 
that the multidimensional equations of state can be constructed via the hodograph equations that in turn pro-
vide the solution to a system of hydrodynamic type64. Following this route we are able to provide a theoreti-
cal description of several complex phenomena stemming from inite-size efects. his phenomenology is rather 
broad and includes the efective cooperativity induced by stochasticity, as well as an enhanced bistability when 
dealing with toggles. Crucially, our procedure naturally allows a further interpretation of the response functions 
of these biochemical systems in terms of cybernetics, that constitutes a novel and transparent way to analyze how 
information is handled during these reactions: once shown the one-to-one behavioral correspondence between 
saturation functions in chemical kinetics, self-consistencies in statistical mechanics and transfer function in elec-
tronics (these are all identical saturable response functions from a cybernetic perspective), we related Condorcet 
phenomenology with signal ampliication and noise suppression and framed it into the elementary scenario of 
ferromagnetic gain.

We tested our theory both against classical experiments (i.e., in the large N limit), recovering all the main 
equations of reaction kinetics as suitable limits (i.e. Micaelis–Menten, Hill, Adair equations) as well as against 
novel experiments involving small system sizes, recovering the expected phenomenology6,16,44.

Further developments of the theory now should proceed in three ways: on one side, still keeping the 
Maxwell-Boltzmann prescription, we can combine small (bio-chemical) circuits together in order to analyze 
information processing in larger chemical networks. On the other side, eforts are still needed to enlarge this 
scheme in order to apply to general out-of-equilibrium regimes (for instance with time-dependent ield vari-
ations). Finally the above procedure can be further enriched by working in synergy with other well developed 
(and possibly alternative) mathematical methods, especially those already thermodynamically oriented -i.e., 
thougth to deal with the complexity of evaluating the partition function at inite size- as, for instance, those 
geometrically-oriented reported in the review by Ruppeiner65.
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