240 research outputs found
A simulation study of energy transport in the Hamiltonian XY-model
The transport properties of the planar rotator model on a square lattice are
analyzed by means of microcanonical and non--equilibrium simulations. Well
below the Kosterlitz--Thouless--Berezinskii transition temperature, both
approaches consistently indicate that the energy current autocorrelation
displays a long--time tail decaying as t^{-1}. This yields a thermal
conductivity coefficient which diverges logarithmically with the lattice size.
Conversely, conductivity is found to be finite in the high--temperature
disordered phase. Simulations close to the transition temperature are insted
limited by slow convergence that is presumably due to the slow kinetics of
vortex pairs.Comment: Submitted to Journal of Statistical Mechanics: theory and experimen
Fluctuations of the heat flux of a one-dimensional hard particle gas
Momentum-conserving one-dimensional models are known to exhibit anomalous
Fourier's law, with a thermal conductivity varying as a power law of the system
size. Here we measure, by numerical simulations, several cumulants of the heat
flux of a one-dimensional hard particle gas. We find that the cumulants, like
the conductivity, vary as power laws of the system size. Our results also
indicate that cumulants higher than the second follow different power laws when
one compares the ring geometry at equilibrium and the linear case in contact
with two heat baths (at equal or unequal temperatures). keywords: current
fluctuations, anomalous Fourier law, hard particle gasComment: 5 figure
Simulation of heat transport in low-dimensional oscillator lattices
The study of heat transport in low-dimensional oscillator lattices presents a
formidable challenge. Theoretical efforts have been made trying to reveal the
underlying mechanism of diversified heat transport behaviors. In lack of a
unified rigorous treatment, approximate theories often may embody controversial
predictions. It is therefore of ultimate importance that one can rely on
numerical simulations in the investigation of heat transfer processes in
low-dimensional lattices. The simulation of heat transport using the
non-equilibrium heat bath method and the Green-Kubo method will be introduced.
It is found that one-dimensional (1D), two-dimensional (2D) and
three-dimensional (3D) momentum-conserving nonlinear lattices display power-law
divergent, logarithmic divergent and constant thermal conductivities,
respectively. Next, a novel diffusion method is also introduced. The heat
diffusion theory connects the energy diffusion and heat conduction in a
straightforward manner. This enables one to use the diffusion method to
investigate the objective of heat transport. In addition, it contains
fundamental information about the heat transport process which cannot readily
be gathered otherwise.Comment: Article published in: Thermal transport in low dimensions: From
statistical physics to nanoscale heat transfer, S. Lepri, ed. Lecture Notes
in Physics, vol. 921, pp. 239 - 274, Springer-Verlag, Berlin, Heidelberg, New
York (2016
Nonequilibrium Green's function method for thermal transport in junctions
We present a detailed treatment of the nonequilibrium Green's function method
for thermal transport due to atomic vibrations in nanostructures. Some of the
key equations, such as self-energy and conductance with nonlinear effect, are
derived. A self-consistent mean-field theory is proposed. Computational
procedures are discussed. The method is applied to a number of systems
including one-dimensional chains, a benzene ring junction, and carbon
nanotubes. Mean-field calculations of the Fermi-Pasta-Ulam model are compared
with classical molecular dynamics simulations. We find that nonlinearity
suppresses thermal transport even at moderately high temperatures.Comment: 14 pages, 10 figure
Phase transitions in self-gravitating systems and bacterial populations with a screened attractive potential
We consider a system of particles interacting via a screened Newtonian
potential and study phase transitions between homogeneous and inhomogeneous
states in the microcanonical and canonical ensembles. Like for other systems
with long-range interactions, we obtain a great diversity of microcanonical and
canonical phase transitions depending on the dimension of space and on the
importance of the screening length. We also consider a system of particles in
Newtonian interaction in the presence of a ``neutralizing background''. By a
proper interpretation of the parameters, our study describes (i)
self-gravitating systems in a cosmological setting, and (ii) chemotaxis of
bacterial populations in the original Keller-Segel model
A random cell motility gradient downstream of FGF controls elongation of amniote embryos
Vertebrate embryos are characterized by an elongated antero-posterior (AP) body axis, which forms by progressive cell deposition from a posterior growth zone in the embryo. Here, we used tissue ablation in the chicken embryo to demonstrate that the caudal presomitic mesoderm (PSM) has a key role in axis elongation. Using time-lapse microscopy, we analysed the movements of fluorescently labelled cells in the PSM during embryo elongation, which revealed a clear posterior-to-anterior gradient of cell motility and directionality in the PSM. We tracked the movement of the PSM extracellular matrix in parallel with the labelled cells and subtracted the extracellular matrix movement from the global motion of cells. After subtraction, cell motility remained graded but lacked directionality, indicating that the posterior cell movements associated with axis elongation in the PSM are not intrinsic but reflect tissue deformation. The gradient of cell motion along the PSM parallels the fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK) gradient1, which has been implicated in the control of cell motility in this tissue2. Both FGF signalling gain- and loss-of-function experiments lead to disruption of the motility gradient and a slowing down of axis elongation. Furthermore, embryos treated with cell movement inhibitors (blebbistatin or RhoK inhibitor), but not cell cycle inhibitors, show a slower axis elongation rate. We propose that the gradient of random cell motility downstream of FGF signalling in the PSM controls posterior elongation in the amniote embryo. Our data indicate that tissue elongation is an emergent property that arises from the collective regulation of graded, random cell motion rather than by the regulation of directionality of individual cellular movements
A new indirect measurement method of the electron temperature for the Protosphera's pinch plasma
This article presents a new method for estimating the electron temperature of
the Protosphera's screw pinch. The temperature radial profile is obtained by a
self-consistent modeling of a 1D MHD equilibrium along with a 0D power balance
of the plasma column, given measurements and estimates of the axial pinch
plasma current, of the plasma rotational frequency and, at the equatorial
plane, of the electron density radial profile, of the edge poloidal magnetic
field, of the edge electron temperature and of the neutrals pressure in the
vacuum vessel. The plasma is considered in equilibrium with its neutral phase
and in constant rotation. A MATLAB code has been developed with the aim of
estimating the MHD radial equilibrium profiles, the thermodynamic plasma state
and the neutrals profile. The numerical estimates are compared with available
experimental data showing a good agreement.Comment: 4 pages, 6 figures, 1 table, research presented to the "6th ICFDT
Rede de cuidado em saúde mental: visão dos coordenadores da estratégia saúde da família
RESUMO Objetivo Objetivou-se analisar a visão de coordenadores da Estratégia Saúde da Família (ESF) sobre a conformação da rede de saúde mental no município de Pelotas/RS. Método Estudo descritivo e exploratório, com abordagem qualitativa, realizado com seis coordenadores de ESF no ano de 2012. Para a coleta dos dados, foi utilizada a entrevista semiestruturada, e os resultados foram avaliados por análise temática. Resultados A rede construída pelos coordenadores é composta por poucos serviços formais e focada no Centro de Atenção Psicossocial (CAPS), e a rede informal é descrita com maiores pontos de cuidado. As trocas de corresponsabilidade no cuidado em rede ocorrem de forma frágil, sem o diálogo necessário. Conclusão Os coordenadores demonstram pouco conhecimento da rede formal de cuidado e uma atenção focada nos serviços da ESF e no CAPS. Reconhecem a importância de haver políticas públicas que valorizem e ampliem os espaços informais de cuidado no território
Detailed Examination of Transport Coefficients in Cubic-Plus-Quartic Oscillator Chains
We examine the thermal conductivity and bulk viscosity of a one-dimensional
(1D) chain of particles with cubic-plus-quartic interparticle potentials and no
on-site potentials. This system is equivalent to the FPU-alpha beta system in a
subset of its parameter space. We identify three distinct frequency regimes
which we call the hydrodynamic regime, the perturbative regime and the
collisionless regime. In the lowest frequency regime (the hydrodynamic regime)
heat is transported ballistically by long wavelength sound modes. The model
that we use to describe this behaviour predicts that as the frequency goes to
zero the frequency dependent bulk viscosity and the frequency dependent thermal
conductivity should diverge with the same power law dependence on frequency.
Thus, we can define the bulk Prandtl number as the ratio of the bulk viscosity
to the thermal conductivity (with suitable prefactors to render it
dimensionless). This dimensionless ratio should approach a constant value as
frequency goes to zero. We use mode-coupling theory to predict the zero
frequency limit. Values of the bulk Prandtl number from simulations are in
agreement with these predictions over a wide range of system parameters. In the
middle frequency regime, which we call the perturbative regime, heat is
transported by sound modes which are damped by four-phonon processes. We call
the highest frequency regime the collisionless regime since at these
frequencies the observing times are much shorter than the characteristic
relaxation times of phonons. The perturbative and collisionless regimes are
discussed in detail in the appendices.Comment: Latex with references in .bib file. 36 pages, 8 figures. Submitted to
J. Stat. Phys. on Sept. 2
Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems
Thermal transport is an important energy transfer process in nature. Phonon
is the major energy carrier for heat in semiconductor and dielectric materials.
In analogy to Ohm's law for electrical conductivity, Fourier's law is a
fundamental rule of heat transfer in solids. It states that the thermal
conductivity is independent of sample scale and geometry. Although Fourier's
law has received great success in describing macroscopic thermal transport in
the past two hundreds years, its validity in low dimensional systems is still
an open question. Here we give a brief review of the recent developments in
experimental, theoretical and numerical studies of heat transport in low
dimensional systems, include lattice models, nanowires, nanotubes and
graphenes. We will demonstrate that the phonon transports in low dimensional
systems super-diffusively, which leads to a size dependent thermal
conductivity. In other words, Fourier's law is breakdown in low dimensional
structures
- …