44 research outputs found
Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling
Sleep spindles and K-complexes (KCs) define stage 2 NREM sleep (N2) in humans. We recently showed that KCs are isolated downstates characterized by widespread cortical silence. We demonstrate here that KCs can be quasi-synchronous across scalp EEG and across much of the cortex using electrocorticography (ECOG) and localized transcortical recordings (bipolar SEEG). We examine the mechanism of synchronous KC production by creating the first conductance based thalamocortical network model of N2 sleep to generate both spontaneous spindles and KCs. Spontaneous KCs are only observed when the model includes diffuse projections from restricted prefrontal areas to the thalamic reticular nucleus (RE), consistent with recent anatomical findings in rhesus monkeys. Modeled KCs begin with a spontaneous focal depolarization of the prefrontal neurons, followed by depolarization of the RE. Surprisingly, the RE depolarization leads to decreased firing due to disrupted spindling, which in turn is due to depolarization-induced inactivation of the low-threshold Ca2+ current (IT). Further, although the RE inhibits thalamocortical (TC) neurons, decreased RE firing causes decreased TC cell firing, again because of disrupted spindling. The resulting abrupt removal of excitatory input to cortical pyramidal neurons then leads to the downstate. Empirically, KCs may also be evoked by sensory stimuli while maintaining sleep. We reproduce this phenomenon in the model by depolarization of either the RE or the widely-projecting prefrontal neurons. Again, disruption of thalamic spindling plays a key role. Higher levels of RE stimulation also cause downstates, but by directly inhibiting the TC neurons. SEEG recordings from the thalamus and cortex in a single patient demonstrated the model prediction that thalamic spindling significantly decreases before KC onset. In conclusion, we show empirically that KCs can be widespread quasi-synchronous cortical downstates, and demonstrate with the first model of stage 2 NREM sleep a possible mechanism whereby this widespread synchrony may arise
Memory-Efficient Synaptic Connectivity for Spike-Timing- Dependent Plasticity
Spike-Timing-Dependent Plasticity (STDP) is a bio-inspired local incremental weight update rule commonly used for online learning in spike-based neuromorphic systems. In STDP, the intensity of long-term potentiation and depression in synaptic efficacy (weight) between neurons is expressed as a function of the relative timing between pre- and post-synaptic action potentials (spikes), while the polarity of change is dependent on the order (causality) of the spikes. Online STDP weight updates for causal and acausal relative spike times are activated at the onset of post- and pre-synaptic spike events, respectively, implying access to synaptic connectivity both in forward (pre-to-post) and reverse (post-to-pre) directions. Here we study the impact of different arrangements of synaptic connectivity tables on weight storage and STDP updates for large-scale neuromorphic systems. We analyze the memory efficiency for varying degrees of density in synaptic connectivity, ranging from crossbar arrays for full connectivity to pointer-based lookup for sparse connectivity. The study includes comparison of storage and access costs and efficiencies for each memory arrangement, along with a trade-off analysis of the benefits of each data structure depending on application requirements and budget. Finally, we present an alternative formulation of STDP via a delayed causal update mechanism that permits efficient weight access, requiring no more than forward connectivity lookup. We show functional equivalence of the delayed causal updates to the original STDP formulation, with substantial savings in storage and access costs and efficiencies for networks with sparse synaptic connectivity as typically encountered in large-scale models in computational neuroscience
A low-noise, noncontact EEG/ECG sensor
Abstract—Typical electroencephalogram (EEG) and electrocardiogram (ECG) sensors require conductive gel to ensure low-impedance electrical contact between the sensor and skin, making set-up time-consuming and long-term recording problematic. We present a gel-free, non-contact EEG/ECG sensor with on-board electrode that capacitively couples to the skin. Active shielding of the high-impedance input significantly reduces noise pickup, and reduces variations in gain as a function of gap distance. The integrated sensor combines amplification, bandpass filtering, and analog-to-digital conversion within a 1 inch diameter enclosure. The measured input-referred noise, over 1-100Hz frequency range, is 2µVrms at 0.2mm sensor distance, and 17µVrms at 3.2mm distance. Experiments coupling the sensor to human scalp through hair and to chest through clothing produce clear EEG and ECG recorded signals. Index Terms—capacitive sensing, non-contact biopotential sensor, EEG, ECG.
6 A Pulse-Coded Communications Infrastructure for Neuromorphic Systems
applies the computational principles used by biological nervous systems to those tasks that biological systems perform easily, but which have proved difficult to do using traditional engineering techniques. Thes
Recommended from our members
A Versatile In-Ear Biosensing System and Body-Area Network for Unobtrusive Continuous Health Monitoring
To enable continuous, mobile health monitoring, body-worn sensors need to offer comparable performance to clinical devices in a lightweight, unobtrusive package. This work presents a complete versatile wireless electrophysiology data acquisition system (weDAQ) that is demonstrated for in-ear electroencephalography (EEG) and other on-body electrophysiology with user-generic dry-contact electrodes made from standard printed circuit boards (PCBs). Each weDAQ device provides 16 recording channels, driven right leg (DRL), a 3-axis accelerometer, local data storage, and adaptable data transmission modes. The weDAQ wireless interface supports deployment of a body area network (BAN) capable of aggregating various biosignal streams over multiple worn devices simultaneously, on the 802.11n WiFi protocol. Each channel resolves biopotentials ranging over 5 orders of magnitude with a noise level of 0.52 ÎĽVrms over a 1000-Hz bandwidth, and a peak SNDR of 119 dB and CMRR of 111 dB at 2 ksps. The device leverages in-band impedance scanning and an input multiplexer to dynamically select good skin contacting electrodes for reference and sensing channels. In-ear and forehead EEG measurements taken from subjects captured modulation of alpha brain activity, electrooculogram (EOG) characteristic eye movements, and electromyogram (EMG) from jaw muscles. Simultaneous ECG and EMG measurements were demonstrated on multiple, freely-moving subjects in their natural office environment during periods of rest and exercise. The small footprint, performance, and configurability of the open-source weDAQ platform and scalable PCB electrodes presented, aim to provide the biosensing community greater experimental flexibility and lower the barrier to entry for new health monitoring research