510 research outputs found
Multilayers of Zinc-Blende Half-Metals with Semiconductors
We report on first-principles calculations of multilayers of zinc-blende
half-metallic ferromagnets CrAs and CrSb with III-V and II-VI semiconductors,
in the [001] orientation. We examine the ideal and tetragonalised structures,
as well as the case of an intermixed interface. We find that, as a rule,
half-metallicity can be conserved throughout the heterostructures, provided
that the character of the local coordination and bonding is not disturbed. At
the interfaces with semiconductors, we describe a mechanism that can give also
a non-integer spin moment per interface transition atom, and derive a simple
rule to evaluate it
Non-collinear Korringa-Kohn-Rostoker Green function method: Application to 3d nanostructures on Ni(001)
Magnetic nanostructures on non-magnetic or magnetic substrates have attracted
strong attention due to the development of new experimental methods with atomic
resolution. Motivated by this progress we have extended the full-potential
Korringa-Kohn-Rostoker (KKR) Green function method to treat non-collinear
magnetic nanostructures on surfaces. We focus on magnetic 3d impurity
nanoclusters, sitting as adatoms on or in the first surface layer on Ni(001),
and investigate the size and orientation of the local moments and moreover the
stabilization of non-collinear magnetic solutions. While clusters of Fe, Co, Ni
atoms are magnetically collinear, non-collinear magnetic coupling is expected
for Cr and Mn clusters on surfaces of elemental ferromagnets. The origin of
frustration is the competition of the antiferromagnetic exchange coupling among
the Cr or Mn atoms with the antiferromagnetic (for Cr) or ferromagnetic (for
Mn) exchange coupling between the impurities and the substrate. We find that Cr
and Mn first-neighbouring dimers and a Mn trimer on Ni(001) show non-collinear
behavior nearly degenerate with the most stable collinear configuration.
Increasing the distance between the dimer atoms leads to a collinear behavior,
similar to the one of the single impurities. Finally, we compare some of the
non-collinear {\it ab-initio} results to those obtained within a classical
Heisenberg model, where the exchange constants are fitted to total energies of
the collinear states; the agreement is surprisingly good.Comment: 11 page
Ballistic Spin Injection from Fe into ZnSe and GaAs with a (001), (111), and (110) orientation
We present first-principles calculations of ballistic spin injection in
Fe/GaAs and Fe/ZnSe junctions with orientation (001), (111), and (110). We find
that the symmetry mismatch of the Fe minority-spin states with the
semiconductor conduction states can lead to extremely high spin polarization of
the current through the (001) interface for hot and thermal injection
processes. Such a symmetry mismatch does not exist for the (111) and (110)
interfaces, where smaller spin injection efficiencies are found. The presence
of interface states is found to lower the current spin polarization, both with
and without a Schottky barrier. Finally, a higher bias can also affect the spin
injection efficiency.Comment: 12 pages, 18 figure
Cd-vacancy and Cd-interstitial complexes in Si and Ge
The electrical field gradient (EFG), measured e.g. in perturbed angular
correlation (PAC) experiments, gives particularly useful information about the
interaction of probe atoms like 111In / 111Cd with other defects. The
interpretation of the EFG is, however, a difficult task. This paper aims at
understanding the interaction of Cd impurities with vacancies and interstitials
in Si and Ge, which represents a controversial issue. We apply two
complementary ab initio methods in the framework of density functional theory
(DFT), (i) the all electron Korringa-Kohn-Rostoker (KKR) Greenfunction method
and (ii) the Pseudopotential-Plane-Wave (PPW) method, to search for the correct
local geometry. Surprisingly we find that both in Si and Ge the substitutional
Cd-vacancy complex is unstable and relaxes to a split-vacancy complex with the
Cd on the bond-center site. This complex has a very small EFG, allowing a
unique assignment of the small measured EFGs of 54MHz in Ge and 28MHz in Si.
Also, for the Cd-selfinterstitial complex we obtain a highly symmetrical split
configuration with large EFGs, being in reasonable agreement with experiments
A polarizable interatomic force field for TiO parameterized using density functional theory
We report a classical interatomic force field for TiO, which has been
parameterized using density functional theory forces, energies, and stresses in
the rutile crystal structure. The reliability of this new classical potential
is tested by evaluating the structural properties, equation of state, phonon
properties, thermal expansion, and some thermodynamic quantities such as
entropy, free energy, and specific heat under constant volume. The good
agreement of our results with {\em ab initio} calculations and with
experimental data, indicates that our force-field describes the atomic
interactions of TiO in the rutile structure very well. The force field can
also describe the structures of the brookite and anatase crystals with good
accuracy.Comment: Accepted for publication in Phys. Rev. B; Changes from v1 include
multiple minor revisions and a re-write of the description of the force field
in Section II
Vacancy complexes with oversized impurities in Si and Ge
In this paper we examine the electronic and geometrical structure of
impurity-vacancy complexes in Si and Ge. Already Watkins suggested that in Si
the pairing of Sn with the vacancy produces a complex with the Sn-atom at the
bond center and the vacancy split into two half vacancies on the neighboring
sites. Within the framework of density-functional theory we use two
complementary ab initio methods, the pseudopotential plane wave (PPW) method
and the all-electron Kohn-Korringa-Rostoker (KKR) method, to investigate the
structure of vacancy complexes with 11 different sp-impurities. For the case of
Sn in Si, we confirm the split configuration and obtain good agreement with EPR
data of Watkins. In general we find that all impurities of the 5sp and 6sp
series in Si and Ge prefer the split-vacancy configuration, with an energy gain
of 0.5 to 1 eV compared to the substitutional complex. On the other hand,
impurities of the 3sp and 4sp series form a (slightly distorted) substitutional
complex. Al impurities show an exception from this rule, forming a split
complex in Si and a strongly distorted substitutional complex in Ge. We find a
strong correlation of these data with the size of the isolated impurities,
being defined via the lattice relaxations of the nearest neighbors.Comment: 8 pages, 4 bw figure
- …