The electrical field gradient (EFG), measured e.g. in perturbed angular
correlation (PAC) experiments, gives particularly useful information about the
interaction of probe atoms like 111In / 111Cd with other defects. The
interpretation of the EFG is, however, a difficult task. This paper aims at
understanding the interaction of Cd impurities with vacancies and interstitials
in Si and Ge, which represents a controversial issue. We apply two
complementary ab initio methods in the framework of density functional theory
(DFT), (i) the all electron Korringa-Kohn-Rostoker (KKR) Greenfunction method
and (ii) the Pseudopotential-Plane-Wave (PPW) method, to search for the correct
local geometry. Surprisingly we find that both in Si and Ge the substitutional
Cd-vacancy complex is unstable and relaxes to a split-vacancy complex with the
Cd on the bond-center site. This complex has a very small EFG, allowing a
unique assignment of the small measured EFGs of 54MHz in Ge and 28MHz in Si.
Also, for the Cd-selfinterstitial complex we obtain a highly symmetrical split
configuration with large EFGs, being in reasonable agreement with experiments