1,523 research outputs found
Vulnerability assessment of the karst aquifer feeding the Pertuso Spring (Central Italy): comparison between different applications of COP method
Karst aquifers vulnerability assessment and mapping are important tools for improved sustainable management and protection of karst groundwater resources. In this paper, in order to estimate the vulnerability degree of the karst aquifer feeding the Pertuso Spring in Central Italy, COP method has been applied starting from two different discretization approaches: using a polygonal layer and the Finite Square Elements (FSE). Therefore, the hydrogeological catchment basin has been divided into 72 polygons, related to the outcropping lithology and the karst features. COP method has been applied to a single layer composed by all these polygons. The results of this study highlight vulnerability degrees ranging from low to very high. The maximum vulnerability degree is due to karst features responsible of high recharge and high hydraulic conductivity. Comparing the vulnerability maps obtained by both methodologies it is possible to say that the traditional discretization approach seems to overestimate the vulnerability of the karst aquifer feeding the Pertuso Spring. Between the two different approaches of COP method, the proposed polygonal discretization of the hydrogeological basin seems to be more suitable to small areas, such as the Pertuso Spring hydrogeological basin, than the traditional grid mapping
Preliminary validation of an indirect method for discharge evaluation of Pertuso Spring (Central Italy)
This paper deals with the results of the first year of the Environmental Monitoring Plan, related to the catchment project of Pertuso Spring, which is going to be exploited to supply an important water network in the South part of Roma district. The study area is located in the Upper Valley of the Aniene River (Latium, Central Italy), in the outcrop of Triassic-Cenozoic carbonate rocks, and belong to an important karst aquifer. Pertuso Spring is the main outlet of this karst aquifer and is the one of the most important water resource in the southeast part of Latium Region, used for drinking, agriculture and hydroelectric supplies. Karst aquifer feeding Pertuso Spring is an open hydrogeological system aquifer characterized by complex interactions and exchanges between groundwater and surface water which influence the aquifer water budget. Thus, evaluation of groundwater discharge from this karst spring can be affected by difficulties in performing measurements because of the insufficient knowledge about water transfer processes in the hydrological cycle and geometry of drainage conduits.
The aim of this paper is to assess the interactions between karst aquifer feeding Pertuso Spring and Aniene River based on stream discharge measurements and water geochemical tracer data in order to validate an indirect method for karst spring discharge evaluation. As a matter of fact, in this paper, there are presented the results of the application of Magnesium as a reliable tracer of karst spring discharge. This indirect method is based on the elaboration of surface water discharge measurements in relationship with Mg2+ concentration values, determined as for groundwater, coming from Pertuso Spring, as for surface water sample, collected upstream and downstream of Pertuso Spring, along Aniene River streamflow. The application of Magnesium as an environmental tracer provides a means to evaluate discharge of Pertuso Spring, as it came up to be a marker of the mixing of surface water and groundwater. On the other hand, the Magnesium ion concentration provides information for the identification of groundwater flow systems and the main hydrogeochemical processes affecting the composition of water within the karst aquifers
Parameterized partial element equivalent circuit method for sensitivity analysis of multiport systems
This paper presents a new technique to perform parameterized sensitivity analyses of systems that depend on multiple design parameters, such as layout and substrate features. It uses the electromagnetic (EM) method called partial element equivalent circuit to compute state space matrices at a set of design space points. These EM matrices are interpolated as functions of the design parameters. The proposed interpolation scheme allows the computation of the derivatives of the matrices, which are needed to perform the sensitivity analysis. An extensive study of the required stability and passivity properties of the system involved in the parameterized sensitivity analysis is presented. Pertinent numerical results demonstrate the robustness, accuracy, and efficiency of the proposed methodology
Integrare le ICT nella didattica universitaria
Negli ultimi anni la sfida per il miglioramento della qualit\ue0 della didattica ha spinto sempre pi\uf9 le universit\ue0 a orientarsi verso modelli learner-centered, nella direzione socio-costruttivista dell\u2019allestimento di ambienti d\u2019apprendimento integrati. Numerose ricerche, infatti, sottolineano come il cambiamento sia favorito dallo sviluppo di processi trasformativi che, unitamente alla considerazione delle concezioni sull\u2019apprendimento e sull\u2019insegnamento, affrontino sistematicamente la progettazione didattica, integrando le diverse conoscenze dei docenti relative ai contenuti, alle metodologie e alle tecnologie.
In particolare, le riflessioni sull\u2019uso delle ICT hanno sviluppato studi teorici e analisi metodologiche volti a ripensare il loro impiego, anche nell\u2019ambito della didattica universitaria, considerandole sempre pi\uf9 come strumenti utili sia sul piano cognitivo (per ricercare, produrre, rielaborare e far interagire il sistema dei saperi), sia su quello socio-culturale (per favorire processi di comunicazione, sviluppo, condivisione e scambio)
Effective electrothermal analysis of electronic devices and systems with parameterized macromodeling
We propose a parameterized macromodeling methodology to effectively and accurately carry out dynamic electrothermal (ET) simulations of electronic components and systems, while taking into account the influence of key design parameters on the system behavior. In order to improve the accuracy and to reduce the number of computationally expensive thermal simulations needed for the macromodel generation, a decomposition of the frequency-domain data samples of the thermal impedance matrix is proposed. The approach is applied to study the impact of layout variations on the dynamic ET behavior of a state-of-the-art 8-finger AlGaN/GaN high-electron mobility transistor grown on a SiC substrate. The simulation results confirm the high accuracy and computational gain obtained using parameterized macromodels instead of a standard method based on iterative complete numerical analysis
Parameterized thermal macromodeling for fast and effective design of electronic components and systems
We present a parameterized macromodeling approach to perform fast and effective dynamic thermal simulations of electronic components and systems where key design parameters vary. A decomposition of the frequency-domain data samples of the thermal impedance matrix is proposed to improve the accuracy of the model and reduce the number of the computationally costly thermal simulations needed to build the macromodel. The methodology is successfully applied to analyze the impact of layout variations on the dynamic thermal behavior of a state-of-the-art 8-finger AlGaN/GaN HEMT grown on a SiC substrate
Stochastic macromodeling for hierarchical uncertainty quantification of nonlinear electronic systems
A hierarchical stochastic macromodeling approach is proposed for the efficient variability analysis of complex nonlinear electronic systems. A combination of the Transfer Function Trajectory and Polynomial Chaos methods is used to generate stochastic macromodels. In order to reduce the computational complexity of the model generation when the number of stochastic variables increases, a hierarchical system decomposition is used. Pertinent numerical results validate the proposed methodology
- …