367 research outputs found

    Bio-ORACLE: a global environmental dataset for marine species distribution modeling

    Get PDF
    The oceans harbor a great diversity of organisms whose distribution and ecological preferences are often poorly understood. Species distribution modeling (SDM) could improve our knowledge and inform marine ecosystem management and conservation. Although marine environmental data are available from various sources, there are currently no user-friendly, high-resolution global datasets designed for SDM applications. This study aims to ?ll this gap by assembling a comprehensive, uniform, high-resolution and readily usable package of global environmental rasters. We compiled global coverage data, e.g. satellite-based and in situ measured data, representing various aspects of the marine environment relevant for species distributions. Rasters were assembled at a resolution of 5 arcmin (c. 9.2 km) and a uniform landmask was applied. The utility of the dataset was evaluated by maximum entropy SDM of the invasive seaweed Codium fragile ssp. fragile. We present Bio-ORACLE (ocean rasters for analysis of climate and environment), a global dataset consisting of 23 geophysical, biotic and climate rasters. This user-friendly data package for marine species distribution modeling is available for download at http://www.bio-oracle.ugent.be. The high predictive power of the distribution model of C. fragile ssp. fragile clearly illustrates the potential of the data package for SDM of shallow-water marine organisms. The availability of this global environmental data package has the potential to stimulate marine SDM. The high predictive success of the presence-only model of a notorious invasive seaweed shows that the information contained in Bio-ORACLE can be informative about marine distributions and permits building highly accurate species distribution models

    Annotated and illustrated survey of the marine macroalgae from Motupore Island and vicinity (Port Moresby area, Papua New Guinea): 3. Rhodophyta

    Get PDF
    The marine benthic red algae of Motupore Island and vicinity (Port Moresby area, Papua New Guinea [PNG]) are documented and 36 of the 161 species are illustrated. All records are listed with bibliographic, biogeographic, taxonomic and nomenclatural comments. Apart from several undescribed taxa, which we are in the process of describing separately, none is endemic to the island at this stage. The discovery of the east Australian species Gracilaria rhodymenioides represents a substantial range extension as does Ceramium lentiforme from New South Wales. One species of Gibsmithia also represents a significant range extension from its Lord Howe Island, Norfolk Island and southern Great Barrier Reef distributions. Platoma ardreanum is reported from outside its Hawaiian distribution for the first time, and the Caribbean Renouxia antillana represents a major range extension for the Pacific. Forty-four species appear to be newly recorded for the PNG marine flora and 108 are new records for the Island itself. Because all collections were taken during the month of July, many seasonal entities may be missing from this list and the total marine flora is not yet known. Moreover, because previous records are quite detailed with respect to epiphytic and turf algae, we have not concentrated on these species. The non-geniculate coralline algae have only been collected sporadically as part of this survey

    Silver Nanoparticle-Coated Polyhydroxyalkanoate Based Electrospun Fibers for Wound Dressing Applications

    Get PDF
    Wound dressings are high performance and high value products which can improve the regeneration of damaged skin. In these products, bioresorption and biocompatibility play a key role. The aim of this study is to provide progress in this area via nanofabrication and antimicrobial natural materials. Polyhydroxyalkanoates (PHAs) are a bio-based family of polymers that possess high biocompatibility and skin regenerative properties. In this study, a blend of poly(3-hydroxybutyrate) (P(3HB)) and poly(3-hydroxyoctanoate-co-3-hydroxy decanoate) (P(3HO-co-3HD)) was electrospun into P(3HB))/P(3HO-co-3HD) nanofibers to obtain materials with a high surface area and good handling performance. The nanofibers were then modified with silver nanoparticles (AgNPs) via the dip-coating method. The silver-containing nanofiber meshes showed good cytocompatibility and interesting immunomodulatory properties in vitro, together with the capability of stimulating the human beta defensin 2 and cytokeratin expression in human keratinocytes (HaCaT cells), which makes them promising materials for wound dressing applications

    Three-dimensional assessment of maxillary changes associated with bone anchored maxillary protraction

    Get PDF
    Bone-anchored maxillary protraction has been shown to be an effective treatment modality for the correction of Class III malocclusions. The purpose of this study was to evaluate 3-dimensional changes in the maxilla, the surrounding hard and soft tissues, and the circummaxillary sutures after bone-anchored maxillary protraction treatment

    Silver nanoparticle-coated polyhydroxyalkanoate based electrospun fibers for wound dressing applications

    Get PDF
    Wound dressings are high performance and high value products which can improve the regeneration of damaged skin. In these products, bioresorption and biocompatibility play a key role. The aim of this study is to provide progress in this area via nanofabrication and antimicrobial natural materials. Polyhydroxyalkanoates (PHAs) are a bio-based family of polymers that possess high biocompatibility and skin regenerative properties. In this study, a blend of poly(3-hydroxybutyrate) (P(3HB)) and poly(3-hydroxyoctanoate-co-3-hydroxy decanoate) (P(3HO-co-3HD)) was electrospun into P(3HB))/P(3HO-co-3HD) nanofibers to obtain materials with a high surface area and good han-dling performance. The nanofibers were then modified with silver nanoparticles (AgNPs) via the dip-coating method. The silver-containing nanofiber meshes showed good cytocompatibility and interesting immunomodulatory properties in vitro, together with the capability of stimulating the human beta defensin 2 and cytokeratin expression in human keratinocytes (HaCaT cells), which makes them promising materials for wound dressing applications
    • …
    corecore