22 research outputs found

    The Weather Radar Observations Applied to Shallow Landslides Prediction: A Case Study From North-Western Italy

    Get PDF
    In northern Italy rainfall-triggered shallow landslides are recurrent hazardous phenomena that cause casualties and extensive damages. In the last decades several early warning systems (EWSs) have been developed based on rainfall intensity–event duration (I-D) thresholds derived by long rain gages time series. However, rain gages density and their representativeness limit reliability of such EWSs. In the past decades, several studies explored successfully the usefulness of reliable quantitative precipitation estimates (QPEs) by weather radar. The availability of high spatial and temporal resolution QPEs with short latency of the data makes those observations appealing as input data to automatic EWSs. Nevertheless, weather radar based QPEs can be affected by several sources of errors and uncertainties (miscalibration, partial beam blocking, overhanging precipitation, and so on). Analyzing the heavy precipitations that hit Piemonte, north-western Italy, on November 2016, causing floods and triggering widespread shallow landslides, this work presents a fruitful case study of operational weather radar application in shallow landslides early warning system

    Editorial: Landslide Hazard in a Changing Environment

    Get PDF

    An Integrated Study to Evaluate Debris Flow Hazard in Alpine Environment

    Get PDF
    Debris flows are among the most dangerous natural processes affecting the alpine environment due to their magnitude (volume of transported material) and the long runout. The presence of structures and infrastructures on alluvial fans can lead to severe problems in terms of interactions between debris flows and human activities. Risk mitigation in these areas requires identifying the magnitude, triggers, and propagation of debris flows. Here, we propose an integrated methodology to characterize these phenomena. The methodology consists of three complementary procedures. Firstly, we adopt a classification method based on the propensity of the catchment bedrocks to produce clayey-grained material. The classification allows us to identify the most likely rheology of the process. Secondly, we calculate a sediment connectivity index to estimate the topographic control on the possible coupling between the sediment source areas and the catchment channel network. This step allows for the assessment of the debris supply, which is most likely available for the channelized processes. Finally, with the data obtained in the previous steps, we modelled the propagation and depositional pattern of debris flows with a 3D code based on Cellular Automata. The results of the numerical runs allow us to identify the depositional patterns and the areas potentially involved in the flow processes. This integrated methodology is applied to a test-bed catchment located in Northwestern Alps. The results indicate that this approach can be regarded as a useful tool to estimate debris flow related potential hazard scenarios in an alpine environment in an expeditious way without possessing an exhaustive knowledge of the investigated catchment, including data on historical debris flow events

    The Territorial Debris Flow Early Warning System of Piemonte (North-western Italy)

    Get PDF
    Debris flows are one of the most frequent and dangerous phenomena affecting the Alpine environment; they are responsible of 36% of casualties due to gravitational phenomena in the Italian Alps during the last century. In the Western Italian Alps (Piemonte, Italy) a Territorial Debris Flow Early Warning System (Te-DFEWS) aimed to forecast and predict the occurrence of sediment mass-transport has been developed, based on the characterization of small Alpine catchments (< 50 km2) and the processes that take place in these. The Te-DFWES is based on the identification of predisposing and triggering factors that determinate debris flow occurrence. The Te-DFEWS operates from 2010 in present-time and nowcasting using weather radar observations as input data. Recently (2021), the Te-DFEWS has been improved extending the forecasting window (up to 48h from simulation) by the introduction of Quantitative Precipitation Estimate/Forecast (QPE/QPF) input from COSMO-2I and ICON-IT, local high-resolution weather models. The Te-DFEWS, named DEFENSE (DEbris Flows triggEred by storms - Nowcasting SystEm) and the related warning procedures are presented as an operational tool integrated in the Regional Warning System for Geo-hydrological and Hydraulic Risk at the Functional Centre of Piemonte, managed by the Regional Agency for Environmental Protection of Piemonte (Arpa Piemonte)

    Wildfires Effect on Debris Flow Occurrence in Italian Western Alps: Preliminary Considerations to Refine Debris Flow Early Warnings System Criteria

    No full text
    Rarely, a close correlation between wildfires and the occurrence of channelized debris flows has been observed in the Western Italian Alps. Only two cases in history have been reported, after brief and localized rainfall events of moderate intensity in Italy’s Piemonte region (NW Italy) caused debris flows, on 18 July 2005, in Verbania province (Pallanzeno municipality), and on June 2018 in Turin province (Bussoleno municipality). These phenomena occurred after a large portion of the catchments were affected by wide wildfires in the preceding months. Debris flow deposits showed an unusually large number of fine-grained particles, forming dark-brown mud-rich deposits associated with burnt wood deposits. Rainfall analysis related to the period between the wildfires’ occurrence and the debris flow events, using both raingauge and weather radar data, pointed out that the debris flows triggered in July 2005 and June 2018 were characterized by greater magnitude but associated with less precipitation intensity rates as compared with previous mud flows occurring just after wildfires. These behaviors can be explained by the presence of burned organic material and fine-grained sediment, generated from the soil’s thermal reworking, which formed a thick layer, centimeters deep, covering a large percentage of catchments and slopes. Most of this layer, generated by wildfires’ action were winnowed by rainfall events that had occurred in the months before the debris flow events, of significant magnitude, exhuming a discontinuous hydrophobic soil surface that changed the slopes’ permeability characteristics. In such conditions, runoff increased, corrivation time shortened, and, consequently, discharge along the two catchments’ channels-network increased as well. Consequently, the rainfall effects associated with rainfall events in July 2005 and June 2019 were more effective in mobilizing coarse sediments in channel beds than was typical for those catchments

    Climate change impacts on mass movements — case studies from the European Alps

    Full text link
    This paper addresses the current knowledge on climate change impacts on mass movement activity in mountain environments by illustrating characteristic cases of debris flows, rock slope failures and landslides from the French, Italian, and Swiss Alps. It is expected that events are likely to occur less frequently during summer, whereas the anticipated increase of rainfall in spring and fall could likely alter debris-flow activity during the shoulder seasons (March, April, November, and December). The magnitude of debris flows could become larger due to larger amounts of sediment delivered to the channels and as a result of the predicted increase in heavy precipitation events. At the same time, however, debris-flow volumes in high-mountain areas will depend chiefly on the stability and/or movement rates of permafrost bodies, and destabilized rock glaciers could lead to debris flows without historic precedents in the future. The frequency of rock slope failures is likely to increase, as excessively warm air temperatures, glacier shrinkage, as well as permafrost warming and thawing will affect and reduce rock slope stability in the direction that adversely affects rock slope stability. Changes in landslide activity in the French and Western Italian Alps will likely depend on differences in elevation. Above 1500 m asl, the projected decrease in snow season duration in future winters and springs will likely affect the frequency, number and seasonality of landslide reactivations. In Piemonte, for instance, 21st century landslides have been demonstrated to occur more frequently in early spring and to be triggered by moderate rainfalls, but also to occur in smaller numbers. On the contrary, and in line with recent observations, events in autumn, characterized by a large spatial density of landslide occurrences might become more scarce in the Piemonte region

    Standards for the performance assessment of territorial landslide early warning systems

    Get PDF
    Landslide early warning systems (LEWS) can be categorized into two groups: territorial and local systems. Territorial landslide early warning systems (Te-LEWS) deal with the occurrence of several landslides in wide areas: at municipal/regional/ national scale. The aim of such systems is to forecast the increased probability of landslide occurrence in a given warning zone. The performance evaluation of such systems is often overlooked, and a standardized procedure is still missing. This paper describes a new Excel user-friendly tool for the application of the EDuMaP method, originally proposed by (Calvello and Piciullo 2016). A description of indicators used for the performance evaluation of different Te-LEWS is provided, and the most useful ones have been selected and implemented into the tool. The EDuMaP tool has been used for the performance evaluation of the “SMART” warning model operating in Piemonte region, Italy. The analysis highlights the warning zones with the highest performance and the ones that need threshold refinement. A comparison of the performance of the SMART model with other models operating in different TeLEWS has also been carried out, highlighting critical issues and positive aspects. Lastly, the SMART performance has been evaluated with both the EDuMaP and a standard 2×2 contingency table for comparison purposes. The result highlights that the latter approach can lead to an imprecise and not detailed assessment of the warning model, because it cannot differentiate among the levels of warning and the variable number of landslides that may occur in a time interval.publishedVersio

    Predisposing Factors for Shallow Landslides in Alpine and Hilly/Apennines Environments: A Case Study from Piemonte, Italy

    No full text
    Landslides are the most common natural hazard in the Piemonte region (northwestern Italy). This study is focused on shallow landslides caused by the sliding of the surficial detrital-colluvial cover caused by rainfall and characterized by a sudden and fast evolution. This study investigates shallow landslide events compared with variables considered as main predisposing qualitative factors (lithology, pedology and land use) to obtain a zonation of shallow landslide susceptibility in a GIS environment. Additionally, wildfire occurrence is also evaluated as a further predisposing factor for shallow landslide initiation. The resulting susceptibility map shows a strong correlation between the first three variables and shallow landslide occurrence, while it shows a negligible, or very localized, relationship with wildfire occurrence. Through the intersection of the predisposing factors with the landslide data points, a map of homogeneous zones is obtained; each identified zone is characterized by uniform lithological, soil-type, and land-use characteristics. The shallow landslide density occurrence is computed for each zone, resulting in a four-range susceptibility map. The resulting susceptibility zones can be used to define and evaluate the hazard linked to shallow landslide events for civil protection and regional planning purposes
    corecore