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landslide early warning systems

Abstract Landslide early warning systems (LEWS) can be catego-
rized into two groups: territorial and local systems. Territorial
landslide early warning systems (Te-LEWS) deal with the occur-
rence of several landslides in wide areas: at municipal/regional/
national scale. The aim of such systems is to forecast the increased
probability of landslide occurrence in a given warning zone. The
performance evaluation of such systems is often overlooked, and a
standardized procedure is still missing. This paper describes a new
Excel user-friendly tool for the application of the EDuMaP meth-
od, originally proposed by (Calvello and Piciullo 2016). A descrip-
tion of indicators used for the performance evaluation of different
Te-LEWS is provided, and the most useful ones have been selected
and implemented into the tool. The EDuMaP tool has been used
for the performance evaluation of the “SMART” warning model
operating in Piemonte region, Italy. The analysis highlights the
warning zones with the highest performance and the ones that
need threshold refinement. A comparison of the performance of
the SMART model with other models operating in different Te-
LEWS has also been carried out, highlighting critical issues and
positive aspects. Lastly, the SMART performance has been evalu-
ated with both the EDuMaP and a standard 2 X 2 contingency
table for comparison purposes. The result highlights that the latter
approach can lead to an imprecise and not detailed assessment of
the warning model, because it cannot differentiate among the
levels of warning and the variable number of landslides that may
occur in a time interval.

Keywords Landslide early warning systems - Rainfall
thresholds - Performance - Duration matrix - Statistical
indicators - Landslides - Territorial
Introduction
Operational landslide early warning systems (LEWS) aim at re-
ducing the loss-of-life probability by inviting stakeholders (e.g.,
civil protection agents, administrators, lay people) to act properly
in populated areas characterized, at specific times, by an intoler-
able level of landslide hazard (Calvello 2017). LEWS widely differ
depending on the type of landslide they address and the scale of
operation, which is related to the size of the area covered by the
system. Two categories of LEWS can be defined on the basis of the
scale of operation (e.g., Bazin 2012): (i) local LEWS (Lo-LEWS),
dealing with a single landslide system at slope scale; and (ii)
territorial LEWS (Te-LEWS), dealing with multiple landslides at
regional scale. The adjective “territorial” is herein preferred over
the most commonly used adjective “regional” to provide a more
general name for all the LEWS employed over a wide area, e.g., a
nation, a region, a municipal territory, a river catchment (Piciullo
et al. 2018).

In the literature, there are several proposals schematizing the
structure of LEWS and highlighting the importance of the relations
among different system components, as well as the role played by
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the actors involved in designing and managing these systems. Di
Biagio and Kjekstad (2007) employ a flow chart to outline four
main sequential activities for such systems: monitoring, analysis
and forecasting, warning, and response. Intrieri et al. (2013), elab-
orating on the well-known four-elements scheme of people-
centered early warning systems proposed by the UNISDR (2006),
describe LEWS as the balanced combination of four different
components: design, monitoring, forecasting, and education.
Calvello et al. (2015) state that the objectives of LEWS should be
defined by considering the scale of analysis and the type of land-
slides, and they represent the process of designing and managing
LEWS by a wheel with four concentric rings identifying the fol-
lowing: the necessary skills, the activities to be performed, the
means to be used, and the basic elements of the system. Calvello
(2017) illustrates the components of early warning systems for
weather-induced landslides within a scheme based on a clear
distinction among landslide models, warning models, and warning
systems, wherein a landslide model is one of the components of a
warning model and the latter is one of the components of a
warning system. All these schematizations highlight the fact that
all the identified system components are essential for LEWS to be
effective, as the failure of any component means the failure of the
whole system. Indeed, early warning systems are only as good as
their weakest link as they can, and frequently do fail for a number
of reasons (Maskrey 1997).

The Hyogo Framework for Action “priority for action 2” (i.e.,
identify, assess and monitor disaster risks, and enhance early
warning) identifies as key activity the establishment of institution-
al capacities to ensure that early warning systems are subject to
regular system testing and performance assessments (HFA 2005).
The scientific literature reports many studies on LEWS, either
addressing a single landslide at slope scale (Lo-LEWS, e.g.,
Pecoraro et al. 2019 and references therein) or concurrent phe-
nomena over wide areas at municipal/regional/national scale (Te-
LEWS, e.g., Piciullo et al. 2018 and references therein), yet the
performance evaluation of the warning models employed within
LEWS is often overlooked by system managers and researchers.
Particularly for Te-LEWS, model performance is often assessed
neglecting some important aspects peculiar to these systems,
among which the occurrence of concurrent multiple landslides in
the warning zone; the issued warning level in relation to the
landslide spatial density in the warning zone; and the relative
importance attributed, by system managers, to different types of
errors (Calvello and Piciullo 2016). Indeed, in the literature, only
few systems are described whose performance has been thorough-
ly assessed (Cheung et al. 2006; Restrepo et al. 2008; Martelloni
et al. 2012; Lagomarsino et al. 2013; Calvello and Piciullo 2016;
Piciullo et al. 2017a; Piciullo et al. 2017b).

A selection of indicators, available in the literature, to quantify
the performance of both rainfall thresholds and EWS is presented
in the following section. The paper aims at identifying the most
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useful ones for the performance evaluation of Te-LEWS. Moreover,
the paper describes the results for the performance evaluation of
the warning model adopted by the Te-LEWS operating in Piemon-
te, Italy (Tiranti and Rabuffetti 2010). The evaluation is based on
the application of the EDuMaP method (Calvello and Piciullo
2016), considering landslides and warnings recorded in the differ-
ent warning zones of the system from 2008 to 2016. The results of
the performance assessment, carried out with the EDuMaP meth-
od, have been compared with the ones obtained using a 2x2
contingency table.

Performance assessment of territorial landslide early warning systems

Rainfall threshold validation and performance of Te-LEWS

In the last decades, rainfall thresholds for landslide occurrence
were thoroughly investigated, producing several different test
cases and relevant technical and scientific advances. A recent
literature review on rainfall thresholds (Segoni et al. 2018a), on
the scientific articles published in journals indexed in SCOPUS or
ISI Web of knowledge in the period 2008-2016, highlights signifi-
cant advances as well as critical issues about this topic. The main
concern is the validation process, which is seldom carried out.
Regrettably, only 38 papers out of 115 (33%) presented a correct
validation analysis performed with an independent dataset, while
31 thresholds (27.0%) were validated using the same dataset used
for calibration and 46 thresholds (40.0%) were published without
any evaluation of their predictive capability. About 34% and 17% of
the investigated rainfall thresholds are employed for early warning
purposes in LEWS, respectively in prototype and operational sys-
tems; for 58% of such thresholds, a performance analysis has been
carried out. The most adopted validation criterion is the compila-
tion of a contingency matrix and the evaluation of performance
indicators derived from that matrix. The contingency matrix is
almost always computed as a 2 X 2 matrix, considering landslide
and warning as dichotomous variables, neglecting both the
different warning levels that can be issued by a LEWS and the
multiple landslides that can occur simultaneously. Piciullo et al.
(2018) and Pecoraro et al. (2019) show, respectively, that the ma-
jority of Te- and Lo-LEWS employ more than two warning levels
(usually 4). In this circumstance, a performance analysis consid-
ering a 2 X 2 contingency table can lead to incomplete or wrong
performance evaluations. To solve this issue, Calvello and Piciullo
(2016) proposed a method, called EDuMaP, for the performance
analysis of a warning model, based on the computation of a
duration matrix, to be used in place of a contingency matrix.
Performance criteria and different performance indicators are
applied to the computed duration matrix to evaluate the perfor-
mance of the warning model.

Indicators used for rainfall threshold validation and performance
evaluation of Te-LEWS

Piciullo et al. (2018) and Segoni et al. (2018a) show that the
contingency matrix is the most used method for both rainfall
threshold validation and performance evaluation of Te-LEWS.
The performance indicators that can be derived from a contingen-
cy matrix are many. Table 1 summarizes the indicators employed
by at least two authors for either rainfall threshold validation or
performance evaluation of Te-LEWS. Indicators employing the
same formula are grouped together, providing the different names
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used in literature, and the related references. The formulas have
been homogenized, for comparative purposes, adopting the fol-
lowing terms to define the four elements of the contingency table:
correct alert, CA; true negative, TN; false alert, FA; missed alert,
MA.

The efficiency index_(1), also called critical success index or
threat score, differs from the efficiency index_(2) because it does
not consider TN. Therefore, the values of these two indicators can
be considerably different. The same is true for the odds ratio,
which evaluates the ratio between positive and negative predic-
tions and can be computed with or without considering TN (re-
spectively identified as odds ratio_(2) and odds ratio_(1) in
Table 1). In the validation process of rainfall thresholds, as well
as in the performance assessment of LEWS, the number of TN,
which represent the absence of both warnings or landslides, is
typically orders of magnitude higher than other terms of the
contingency table. Thus, considering TN in the performance indi-
cator can lead to an overestimation of the (computed) efficiency of
the system. For this reason, the efficiency index and the odds ratio
computed without TN are to be preferred in validation and per-
formance analyses.

The efficiency index_(1) and the odds ratio_(1) are related by
the following expression: 1/EI - 1/OR =1, so it could be sufficient to
select one of them in performance analyses. Furthermore, the hit
rate and the missed alert rate are complementary, as well as
positive predictive power and false missed alert rate. Among the
indicators used to quantify errors, it is worth mentioning the
missed and false alerts balance, which defines the percentage of
MA among the erroneous predictions and thus it ranges between o
and 1. From the perspective of reducing the number of MA, which
may cause higher negative consequences compared with FA,
missed and false alerts balance values should be as low as possible.

The considerations above have led to the selection of 2 main
performance indicators, for the alert classification criterion (crite-
rion A in the following): (i) efficiency index (1) and (ii) missed
and false alerts balance.

A tool for the application of the EDuMaP method

The EDuMaP is a method for the performance analysis of a
warning model, based on the computation of a duration matrix,
to be used in place of a contingency matrix. Performance criteria
and different performance indicators are applied to the computed
duration matrix to evaluate the performance of the warning mod-
el. The model is fully described in Calvello and Piciullo (2016). An
Excel tool for the application of the EDuMaP method has been
recently programmed in Visual Basic for Applications. The Excel
spreadsheet comprises an initial “home” page and some other
tabs. The left side of the home page is set to define the input data
for the performance analysis and to run different subroutines,
following the main structure of the EDuMaP method (Fig. 1).
The right side of the home page presents the chosen performance
criteria, the computed duration matrix, and the final results of the
analysis in terms of performance indicators. The values of the 10
input parameters (i.e., warning levels, landslide density criterion,
lead time, landslide typology, minimum interval between landslide
events, over time, area of analysis, spatial discretization adopted
for warnings, time frame of analysis, temporal discretization of
analysis), as well as the landslide and warning datasets for the
period of analysis, are defined in separate tabs. Once the datasets



Table 1 Performance indicators adopted by different authors engaged in rainfall threshold validation or LEWS performance assessment, grouped by formula

Name Formula

Employed for rainfall

Employed for LEWS performance

threshold validation

Critical success index’, CA/(CA+MA+FA)
efficiency index_(1)?,

threat score® 2013

Tiranti and Rabuffetti
20102; Staley et al.

Cheung et al. 2006"; Piciullo et al. 2017b% Calvello and
Piciullo 2016’

efficiency index_(2) (CA+TN)/(TN+CA+MA+FA)

Lagomarsino et al. 2015

Martelloni et al. 2012; Lagomarsino et al. 2013; Calvello
and Piciullo 2016;

balance

Probability of detection’, CA/(CA+MA) Tiranti and Rabuffetti Cheung et al. 2006'; Restrepo et al. 2008"; Martelloni
sensitivity?, hit rate?, 2010%; Staley et al. et al. 2012% Lagomarsino et al. 2013% Calvello and
true positive rate* 2013* Gariano et al. Piciullo 2016%; Piciullo et al. 2017b*

2015
Positive predictive power CA/(CA+FA) Martelloni et al. 2012; Calvello and Piciullo 2016;
Piciullo et al. 2017b

Odds ratio_(1) CA/(MA+FA) Piciullo et al. 2017b

Odds ratio_(2) (CA+TN)/(MA+FA) Martelloni et al. 2012; Calvello and Piciullo 2016

False positive rate’, FA/(FA+TN) Staley et al. 2013 Martelloni et al. 2012"; Lagomarsino et al. 2013
probabiliq of false Gariano et al. 2015
detection

False negative rate; MA/(MA + CA) Martelloni et al. 2012"; Lagomarsino et al. 2013';
missed alert rate Calvello and Piciullo 2016%; Piciullo et al. 2017b

False alert rate’, FA/(FA+CA) Tiranti and Rabuffetti Cheung et al. 2006'; Restrepo et al. 2008"; Calvello and
probability of false 2010"; Gariano et al. Piciullo 2016'; Piciullo et al. 2017b’
alarms? 20152

Missed and false alert MA/(FA+MA) Piciullo et al. 2017b

are inserted, it is possible to generate landslide and warning
events, i.e., to group landslides and warnings on the basis of the
values of the input parameters. After that, the element value of the
duration matrix, dj;, can be computed. Then, two sets of perfor-
mance criteria need to be defined. Figure 1 reports the two perfor-
mance criteria that will be used for the analysis presented in this
paper. They are named, respectively, alert classification (criterion
A) and grade of correctness (criterion B). The first criterion (A)
employs an alert classification that groups together some elements
of the matrix to identify: correct alerts, CA; false alerts, FA; missed
alerts, MA; true negatives, TN. The second criterion (B) assigns a
color code to the elements of the matrix in relation to their grade
of correctness, herein classified in four classes as follows: green,
Gre, for the elements which are assumed to be representative of the
best model response; yellow, Yel, for elements representative of
minor model errors; red, Red, for elements representative of sig-
nificant model errors; purple, Pur, for elements representative of
the worst model errors. Once the two performance criteria are
defined, the performance indicators can be computed, and the
results are shown in both tabular and graphical formats.

The performance indicators employed in the Excel tool and,
adopted in this paper, are a revised and reduced version of what
has been proposed by Calvello and Piciullo (2016) and Piciullo
et al. (2017a). They refer both to alert classification criterion (A),
grade of correctness criterion (B), and a mix of the two (A+B). The
indicators adopted herein for criterion A have been discussed in
the “Indicators used for rainfall threshold validation and perfor-
mance evaluation of Te-LEWS” section. For the reasons described
in that section, the computation of all the performance indicators
does not include the element d,,, which represent the amount of

time associated with the simultaneous absence of warning and
landslide events. Table 2 shows the indicators used, their formulas,
and the reference to the performance criterion considered.

Case study

Piemonte “SMART” LEWS

Arpa Piemonte (the Regional Agency of Environmental Protection
of Piemonte) developed its first shallow landslides early warning
system in 2008 (Tiranti and Rabuffetti 2010). The LEWS, called
SMART (Shallow landslides Movement Announced through Rain-
fall Thresholds), are based on an empirical intensity-duration (ID)
model where the thresholds have been identified by back analysis,
considering the relationship between historical widespread shal-
low landslide events that occurred in 1990 and 2002 and rainfall
data recorded by the regional rain gauge network (more than 400
rain gauges distributed over an area of 25,873 km?).

SMART operates both in real-time and in forecasting mode,
coherently with the setup of the Regional Warning System for Geo-
hydrological and Flooding Risk in Piemonte (RWS) (Rabuffetti
et al. 2003; Rabuffetti and Barbero 2005). SMART operates in two
macro-zones of the Piemonte region, called “homogeneous
zones”: Alps and Apennine; hilly environment including Tertiary
Piedmont Basin (TPB) and Torino Hill (Fig. 2a). The two zones are
characterized by two different sets of thresholds (Eqgs. 1 and 2),
developed considering the rain gauge locations within the two
zones.

Zone 21 = 25-d % (1)
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Fig. 1 Excel tool interface for the application of the EDuMaP method

Zone 2 I = 40-d°%

Thresholds become operative for rainfall duration exceeding
12 h. Indeed, for rainfall lasting less than 12 h, thresholds
overpassing may indicate the probability of occurrence of other

Table 2 Performance indicators considered for the analyses

phenomena commonly triggered by short and intense rainstorms,
such as accelerated soil erosion due to widespread surface runoff
or channelized debris flows in small Alpine catchments. Intersec-
tion between the two homogeneous zones of Fig. 2a and the 1
warning zones of the RWS produces warning zones (Fig. 2b) for
the prediction of shallow landslides.

SMART does not employ a probabilistic approach, and there-
fore, an issued warning has the same degree of severity whether

Performance indicator Performance criterion (Fig. ) Symbol Formula
Efficiency index_(1) Criterion A El_A CA/Xd;; (excluding dy.)
Criterion B EI_B (Gre + Yel)/ 2jd;; (excluding d7)
Criteria A+B El_A+B (Gre + Yel + CA)/2* Xy;d;; (excluding d4)
Probability of serious missed alerts Criteria A+B Psmi-ma MAp,,/MA
Probability of serious false alerts Criteria A+B Psm-ra FApy./FA
Missed and false alert balance Criteria A+B MFB (MApy; + MAgeg)/(MApy, + MAged + FApy; + FAgeq)
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Fig. 2 a Areas with homogeneous behavior in the SMART model (Homogeneous areas). b 11 warning zones deriving from the intersection between the RWS Alerting

areas and the SMART homogeneous areas

the threshold value is just reached or whether it is exceeded by a
considerable amount. However, three levels of warnings are de-
fined, based on an indirect estimation of the expected landslides,
estimated as a function of the number of rain gauges for which the
rainfall threshold is exceeded in real-time or in forecasting mode.

In addition to the no-warning condition, corresponding to a
negligible probability of shallow landslide occurrences, the other
warning levels are as follows: (1) yellow (isolated triggering of
shallow landslides); (2) orange (diffuse but not widespread trig-
gering of shallow landslides, equivalent to less than 10 landslides
in a warning area); (3) red (widespread triggering of shallow
landslides, equivalent to more than 10 landslides in a warning
area).

Performance analysis

The performance of the warning model employed in the SMART
has been evaluated adopting the EduMaP method (Calvello and
Piciullo 2016) using the Excel tool described in the “A tool for the
application of the EDuMaP method” section. The analysis was
performed considering the values of the 10 input parameters
reported in Table 3. Landslide events (LE) are defined, according
to Calvello and Piciullo (2016), as a series of landslides grouped
together based on their spatial and temporal characteristics. The
performance assessment was conducted considering the landslide
events (LE) and the warning events (WE) registered in Piemonte
between January 2008 and December 2016 (Table 4) in 10 warning
zones (from A to L). One warning area (M, see Fig. 2) was not
considered since no landslides occurred in that area during the
period of analysis.

Figure 3a and b show the results obtained for the ten warning
areas, reporting the number of elements of the 10 durations ma-
trices for the two performance criteria reported in Fig. 1, i.e., the
alert classification criterion—herein called criterion A—and the
grade of correctness criterion—herein called criterion B. The time
unit considered in the duration matrix is day, consistently with the
temporal discretization available for the considered data sets (At =
1 day). Therefore, considering the time frame of the analysis
(AT =9 years), the total number of elements for each duration
matrix is 3287 days.

Figure 4a and b show the results in terms of performance
indicators for the ten warning zones. Comparing the efficiency
indexes (EI_A, EI_B, and EI_A+B), the higher values are reached
for EI_B, due to the significant number of Yel elements observed in
all the warning zones. This means that most of the MA and FA
observed in the period of analysis are associated with minor errors
of the model. The results provided by these three indicators gen-
erally agree in pointing out that the best-performing models are
those adopted for zones A and C. It is worth mentioning that in 6
cases out of 10, the EI_A is lower than 50%, indicating that the sum
of MA and FA is higher than the number of CA (especially for
zones I and L).

Among the error indicators, the probability of serious missed
alerts indicator (Pspama) is higher than 10% in 6 cases out of 10,
pointing out that the majority of severe model errors are related to
missed alert of very large landslide events. This can be explained,
as discussed in Stoffel et al. (2014), considering that temperature
changes cause important modifications of the slopes’ hydrological
cycle, as well as of the precipitation type and behavior, such as
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Table 3 Input parameters for the classification, identification, and temporal analysis of landslide events (LE) and warning events (WE)

Parameters of event analysis Symbol Relevant for Value

1. Warning levels Wiev Classification of WE 4

2. Landslide density criterion Lenc) Classification of LE LE;: 0-1 landslide
LE,: 2-5 landslides
LE;: 6-9 landslides
LE4: > 10 landslides

3. Lead time LEAD Identification of WE 0

4. Landslide typology Lyp Identification of LE Rainfall-induced

5. Minimum interval between Landslide Events Aty Identification of LE 1 day

6. Over time Tover |dentification of LE 0

7. Area of analysis A Temporal analyses of LE and WE Piemonte

8. Spatial discretization adopted for warnings AAy Temporal analyses of LE and WE 10 warning zones

9. Time frame of analysis AT Temporal analyses of LE and WE 3287 days

10. Temporal discretization of analysis At Temporal analyses of LE and WE 1 day

increase of winter precipitations and decrease of autumn ones;
shortening of snow cover persistence during spring. The acceler-
ated snowmelt contributes significantly to the triggering of shallow
landslides, also in presence of spring rainfall of moderate intensity,
because water deriving from snow melting completely infiltrates
the ground. On the other hand, although the probability of serious
false alerts indicator (Psy.ra) is equal to zero in 7 cases out of 10, in
the remaining 3 cases, more than 30% of the FA are Pur errors.
Regarding the missed and false alert balance (MFB), which repre-
sents the ratio of MA over the sum of MA and FA, Piciullo et al.
(2017a) recommended values lower than o0.25 for operational Te-
LEWS to be considered efficient (i.e., the duration of MA should
be less than one-third of the duration of FA). This condition is
respected only in 1 case out of 10, while MFB is equal to 1 for
warning zones E, I, and L.

Figure 5 reports a detailed analysis on the grade of severity of
MA and FA and the grade of correctness of CA, distinguishing
respectively among Pur, Red, Yel and Gre, Yel.

In all the warning zones, some LE are missed in the period of
analysis and in 7 cases out of 10, several Pur errors occur (i.e., a LE
of class 4 missed). However, in almost all the cases (8 out of 10),
most errors are Yel errors. The exceptions are represented by G
and L, the two warning zones characterized by the highest num-
bers of missed alerts (15 and 12, respectively). The presence of a
significant number of Pur and Red is probably due to adopted
rainfall thresholds that are inadequately high for these warning
zones. The number of FA is generally lower than the number of
MA (except for zone H). Besides, in 3 cases out of 10, only MA and
no FA are observed in the period of analysis. It should also be
mentioned that, when FA occurs, most of them are characterized
by Pur and Red errors, revealing that in many cases, warning level
(WL) 3 and 4 were issued without the occurrence of large LE.
Finally, the warning model was able to correctly predict the occur-
rence of several landslide events in all the warning zones, espe-
cially in A, B, and C. However, as already noted, a relatively
slight number of correct alerts are associated with the best
performance of the model (i.e., Gre elements) and in three
warning zones (E, H, and L), only Yel elements were
observed.
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Discussion

Metrics of success and error for Te-LEWS

Different performance indicators are available in the scientific
literature for rainfall threshold validation and performance of
LEWS (see the “Performance assessment of territorial landslide
early warning systems” section). The following three indicators
(see Table 2) are herein used for the comparison of the perfor-
mance of the SMART model with different models adopted in
other Te-LEWS: efficiency index_(1), performance criterion A,
(EI_A); and missed and false alerts balance (MFB). These values
are discussed in relation to the values provided in the literature by
different authors.

In the LEWS operating in Hong Kong, two warning models
currently coexist. Indeed, a SWIRLS Landslip Alert (SLA) model
was developed and added to the system to provide some lead time
(up to 3 h) to the warnings before the standard landslip warning
criteria are exceeded. The SLA model considers the rolling 21 h of
measured rainfall plus a 3-h rainfall forecast, whereas the standard
landslip warning model is based on the measured 24-h accumu-
lated rainfall. The performance for the period 2001-2004 of both
models has been reported in Cheung et al. (2006). The EI_A of the
models resulted, respectively, equal to 61% and 78%, for the SLA
and the landslip warning models. Based on these values, the
author stated that both the SLA and landslip warning were
found to be generally effective. To compare the performance of
these models with the performance evaluation carried out in this
manuscript for the SMART system, the data provided in the paper
by Cheung et al. (2006) have been used to compute the missed and
false alert balance. The SLA and landslip warning models in the
period 2001-2004 showed MFB values equal to 33% and zero.

In Restrepo et al. (2008), a performance analysis of the proto-
type debris flow warning system for recently burned areas in
Southern California has been carried out for the winter of 2005/
2006 (first year of operation). In this case, the probability of
detection (92%) and the false alert rate (72%) (see Table 1) have
been evaluated. Considering the same database, for comparative
purposes, the EI_A and missed alert balance have been computed.
The values are quite low for the success indicator EI_A: 28%. The
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Fig. 3 a, b Relative distribution of CA, MA, and FA (criterion A) and Pur, Red, Yel, and Gre (criterion B in the ten warning zones, not considering the TN elements

missed alert balance is low due to the high number of false alerts
compared with both missed alerts and correct alerts. Since the
values of the success indicators are quite low, the indicators have
not been included in the comparison in Fig. 6.

The performance analysis of the SIGMA model, employed in
the LEWS operational in the Emilia Romagna region, Italy, and
described in Martelloni et al. (2012), and Lagomarsino et al. (2013),
reports very high values for the odds ratio and the efficiency index,
which prompt the authors of those papers to highlight the very
good predictive power of the model. However, those performance
indicators have been computed including TN, and they are signif-
icantly influenced by the very high number of TN in the period of
analysis. The analysis performed for the SMART system, purpose-
fully exclude TN elements from the computation of the perfor-
mance indicators, for the reasons described in the “Indicators used
for rainfall threshold validation and performance evaluation of Te-
LEWS” section. For comparative purposes, the data provided in
the papers by Martelloni et al. (2012), and Lagomarsino et al.
(2013), have been used to compute new values of the performance
indicators not including TN. The results for the three selected
indicators are, respectively, for the two papers: EI_A equal to
15.9%, 14%; 0.17; missed and false alert balance equal to 6.9%,
5%. Since the values of the success indicators are quite low, also
in this case the indicators have not been included in the compar-
ison (Fig. 6). However, some updates to increase the performance
of SIGMA model have been recently realized and published in
Segoni et al. (2018D).

Calvello and Piciullo (2016) reported the first application of the
EDuMaP method. They applied it to the municipal early warning
system operating in Rio de Janeiro, Brazil, for which they carried
out a parametric analysis. They also presented a list of indicators
for the performance evaluation of LEWS. Among them, the effi-
ciency index was evaluated in the same way of EI_A of Table 1
(considering how criterion A was applied); thus, they are directly
comparable with the results obtained for the SMART model. The
two performance indicators were evaluated for two warning zones
(out of 4) of the municipality: baia de Guanabara and zona Sul. In
these two zones, the authors report values of EI_A equal to 75%
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(baia de Guanabara) and 66% (zona Sul). The MFB, herein calcu-
lated considering the data provided in the paper by Calvello and
Piciullo (2016), has the following values: 14.5% for baia de
Ganabara and 3.4% for zona Sul.

To compare the performance evaluation of the SMART model
with the literature case studies previously mentioned, a radar chart
is used (Fig. 6) where the literature experiences are reported for all
the 10 warning zones. The computed values of the three versions of
the efficiency index, computed without considering the TN (EL_A,
EI_B, EI_A+B), are compared with the following values: 61% (SLA
from Cheung, 2006); 78% (landslip warning from Cheung, 2006)
75% (baia de Guanabara from Calvello and Piciullo 2016); 66%
(zona Sul from Calvello and Piciullo 2016). The computed values
of the missed and false alert balance (MFB) are compared with the
following values: 33% (SLA from Cheung, 2006); 14.5% (baia de
Guanabara from Calvello and Piciullo 2016); 3.4% (zona Sul from
Calvello and Piciullo 2016), and 25% (Piciullo et al. 2017a). Figure 6
clearly shows that the application of the performance criterion A is
the most conservative (see blue markers) and that criterion B is the
one providing the highest values of the indicators (see red
markers). Zones A, B, C, E, F, and G have high values of EI_A
compared with the references from the literature. Piciullo et al.
(2017a) recommended a value of MFB lower than 25% for consid-
ering efficient a warning model within an operational Te-LEWS
(i.e., only one wrong alert out of four is a MA). This condition is
respected for the 3 zones out of 10 in our analyses: B, C, H. This
comparison shows that the SMART model employed in zone C is
giving the best performance. On the contrary, zones L and I should
be considered for thresholds improvement, since their perfor-
mance is quite poor.

Comparison with simpler validation techniques

The validation of the thresholds used in the SMART LEWS was
conducted in 2008 using a 2 X 2 contingency table (Tiranti and
Rabuffetti 2010), evaluating the joint distribution of “yes”/“no”
and “landslide forecast”/“occurrence.” The performance evalua-
tion was conducted considering the whole set of widespread shal-
low landslide events that occurred between 1990 and 2002. The
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indicators considered for the analysis were hit rate (HR), false alert
rate (FAR), and efficiency index_(1) (EI). Formulas are reported in
Table 1.

The results showed the following values for the three analyzed
indicators: HR = 0.83, FAR = 0.45, and EI=0.49 (Tiranti and
Rabuffetti 2010). Among all the single landslides that occurred in
the period of analysis, 83% has been correctly predicted. Yet, the
high number of false alerts produced a rather low value of EI and a
high value of FAR. As already mentioned, when employing a 2 X 2
contingency table for the performance evaluation of LEWS, it is
not possible neither to distinguish among different warning levels
nor considering the number of landslides. Consequently, it is not
possible to identify the warning levels that cause false alerts.
Usually, when a low warning level is issued, one or few landslides
are expected. However, it is not always possible to record all the
landslides that occur in a warning zone, since the area covered is

always very wide and the places that are not urbanized are signif-
icant. Consequently, one should judge with care the assessment of
the non-occurrence of one or few landslides when a low warning
level has been issued.

Table 5 reports the results of a performance evaluation of the
SMART model conducted adopting the same validation technique
(i.e., 2 X2 contingency table) adopted in Tiranti and Rabuffetti
(2010), using the database described in the “Performance analysis”
section, for the period 2008-2016. Two different comparisons can
be derived from the results of this new analysis: (i) comparison of
the performance of the SMART model in two different time pe-
riods, using a simple validation technique, and (ii) comparison of
the results obtained conducting the performance assessment in
two different ways, i.e., by employing the EDuMaP method and a
simpler validation technique.
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Concerning the first issue, i.e., comparison of the performance
of the SMART model in two different time periods, the results
clearly highlight a decrease of EI, whose values change from 0.49
(period 1990-2002) to 0.14 (period 2008-2016), demonstrating
that the general accuracy of the SMART model significantly
decreased in a relatively short period of time. This is also con-
firmed by the low value of HR (0.28), mainly due to the relevant

| Landslides

number of missed landslide events (70 out of 97). Besides, an
increasing number of false alarms can be also observed, as the
value of FAR is equal to 0.79. The very different performance of
the SMART model in the two periods could be associated with
the non-stationarity of the rainfall characteristics in the two
periods. The shallow landslide events’ behavior has changed
between 1960 and 2016 in Piemonte, as shown by the data
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reported in Table 6. Landslide events until around 2000 were
characterized by an average return period of about 5 years, high
number of phenomena (from 1000 to more than 10,000) during a
single event, and a higher frequency of occurrence in the fall
season (September-November). After the year 2000, the frequen-
cy of the landslide events has increased (about one event per
year), the main season of occurrence became spring (March-
June), and the events are typically characterized by a lower
number of landslides (from 50 to about 2000), as already report-
ed by Stoffel et al. (2014) and subsequently updated by Tiranti
et al. (2019). All that considered, the performance of the SMART
model has also been most likely influenced by the significant
changes of the weather pattern that have been occurring in the
area in a relatively short time (Cremonini and Tiranti 2018). In
fact, the SMART model was calibrated considering landslide
events that occurred between 1990 and 2002, thus practically
using landslide data before the recorded (almost abrupt) change
in behavior of the temporal and spatial distribution of wide-
spread shallow landslide events.

About the second issue, i.e., comparison of results obtained
conducting the performance assessment in two different ways,
the performance computed with the simpler validation technique
is generally poor for all the warning zones (especially for E, H, and
L), as highlighted by the very low values of EI (Table 5). Looking at
HR, it is worth mentioning that in almost all the cases (apart from
B and C) more than half of the occurred landslides were not
forecasted by the model. Besides, the high values of FAR suggest
that for all the warning zones, most of the warnings issued are false
alarms. On the other hand, the performance evaluation carried out
with the EDuMaP method highlighted a relatively good model
performance in several warning zones (especially in A, B, and C).
This can be explained considering that the EDuMaP method al-
lows for a more detailed analysis on the severity of the errors and
the correctness of the predictions. The performance analyses,
carried out with the two methods, also indicate different warning
zones as the best-performing ones: A and C using the EDuMaP
method; D using the simpler validation technique. This difference
can be related again to the possibility of a more detailed

Table 5 Performance analysis of the SMART model from 2008 to 2016, conducted considering the validation technique adopted by Tiranti and Rabuffetti (2010):

performance indicators (HR, FAR, and El) for each warning zone

Contingency table 2 x 2 EDuMaP

Warning zone CA MA FA HR FAR El [%] CA MA FA El A+B [%]
All 27 70 101 0.28 0.79 14

A 6 9 22 0.40 0.79 16 25 10 2 78
B 4 3 20 0.57 0.83 15 19 3 5 74
C 3 3 15 0.50 0.83 14 15 3 3 81
D 4 6 6 0.40 0.60 25 7 7 2 62
E 1 5 5 0.17 0.83 9 5 5 0 70
E 3 9 7 0.25 0.70 16 8 10 1 58
G 3 13 13 0.19 0.81 10 12 15 2 53
H 0 1 7 0.00 1.00 0 3 1 4 44
| 2 10 2 0.17 0.50 14 3 1 0 43
L 1 1 4 0.08 0.80 6 4 12 0 44
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Table 6 Shallow landslide events observed from 1962 to 2016 in Piemonte (fall events in italic—maodified from Tiranti et al. 2019). Tertiary Piedmont Basin (TPB)

Event date Involved area Number of landslides
November 1962 Alps and TPB > 2000
November 1968 Alps ~ 2000
February—May 1972 Torino Hill and TPB > 200
May 1974 Torino Hill and TPB ~ 500
May 1977 Alps ~ 100
October 1977 Alps and TPB X 1000
August 1978 Alps ~ 700
August 1987 Alps ~ 100
September and October 1993 Alps and TPB =200
November 1994 TPB and Alps X 10,000
October 1996 Alps x50
September 1998 Alps =50
May 1999 Alps and TPB ~ 50
October 1999 TPB and Apennine =50
June 2000 Alps and TPB ~ 100
October 2000 Alps >2000
November 2000 Alps ~100
March 2002 Alps ~ 50
May 2002 Alps ~ 100
June 2002 Alps ~ 100
November 2002 TPB and Alps ~ 500
May 2004 Alps ~ 10
June 2007 Torino Hill ~20
May 2008 Alps ~ 300
December 2008 TPB ~ 100
April 2009 TPB and Alps ~ 1000
May 2010 PB ~10
June 2010 Alps ~ 100
March 2011 TPB ~ 100
November 2011 Alps ~ 300
April-May 2013 Hills ~ 200
May 2013 Torino Hill and Alps ~ 200
November 2014 Alps and TPB =200
November 2016 Alps and TPB > 2000

assessment of the model performance when the EDuMaP method
is used. In this case, this highlights that the large majority of MA
and FA, in some warning zones, are not severe errors of the
warning model.

Conclusions

The performance evaluation of LEWS is often overlooked; howev-
er, different indicators are available in the literature and can be
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employed for this task. These indicators have been homogenized
and proposed in the “Indicators used for rainfall threshold vali-
dation and performance evaluation of Te-LEWS” section. Few of
them have been judged by the authors to be essential for describ-
ing the performance of a LEWS (see Table 2). The most
important indicators that can give a general overview of the
system performance are the efficiency index (EI) and the
missed and false alert balance (MFB). The first can be



considered to evaluate the general success rate of a Te-LEWS;
the latter can be used to evaluate the percentage of missed
alerts among the wrong predictions (sum of false and missed
alerts). Then, to have a more detailed understanding on the
severity of the missed and false alerts (i.e., wrong predictions
that belong to the purple cells), it is relevant to evaluate and
analyze the probability of serious missed alerts and probabil-
ity of serious false alerts (Psy.pa, Psmma). They quantify,
respectively, the percentage of the serious no-warning mis-
takes (i.e., missed alerts of a high LE class) and of serious
no landslides mistakes (i.e., false alerts with high levels of
warning issued).

According to the results of these four indicators, it is possible to
fully evaluate the system performance and to identify the warning
levels and, consequently, the thresholds that need to be refined.
Concerning the use of the efficiency index to evaluate different
criteria (A, B, A+B), it is possible to state that the values of the EI
for the criteria A and B correspond, respectively, to a lower and an
upper bound (Fig. 6a). The use of EI for the combined criterion
(A+B) is, however, to be preferred for the performance analysis. By
comparing the performance of different Te-LEWS, it is possible to
state that a system should have a EI higher than 60%. However, EI
(A+B) in an efficient system should exceed 80%, as it is the case
for zones A and C in our application. Concerning MFB, it should
not be greater than 20%, better if its value is lower than 10%. For
evaluating the indicators, the element d,, (i.e., the TN values) of the
duration matrix has been purposefully neglected, to avoid an
overestimation of the performance (see the “Metrics of success
and error for Te-LEWS” section).

The definition of the landslide events deserves some remarks. It
is influenced by a series of choices the analyst needs to make in
selecting and grouping landslides (Calvello and Piciullo 2016). The
definition of limit values to differentiate among k classes of land-
slide events (see Table 3) has been discussed at length with the
SMART system managers. Standard or commonly used procedures
do not exist in literature since the classification of landslide events
varies, as it should, as a function of the LEWS under investigation.
Indeed, this classification depends on how the warning levels, and
their thresholds, have been defined, as well as on the expected
number of landslides associated with each warning level. For these
reasons, it is of great importance that this parameter, as well as the
definition of the performance criteria (see the “A tool for the
application of the EDuMaP method” section), is defined by the
analyst in accordance with the system managers. A parametric
analysis carried out in Piciullo et al. (2017b) shows how the per-
formance evaluation can differ as a function of the landslide
criterion and how its definition is a crucial point to obtain a
correct performance evaluation of the warning model.

Performance assessment of Te-LEWS is a fundamental issue to
run an efficient warning model. Often the performance analysis of
Te-LEWS is carried out considering a 2 X 2 contingency matrix.
Yet, with this method, it is not possible to differentiate among
different warning levels and number of occurred landslides in a
given time interval. For instance, a missed alert of just 1 landslide
is judged in the same way of a missed alert of many landslides.
Moreover, the error associated with the highest level of warning
issued when no landslides occurred is judged in the same way as
the one associated with any lower level of warning issued with no

landslides. To overcome these issues, an advanced method for the
performance evaluation of LEWS should be used.

An Excel-based tool (freely available on request), programmed
in VBA, has been recently released to increase and speed the
applicability. In this paper, EDuMaP has been employed, using
the Excel tool, to the SMART warning model operational in the
LEWS of Piemonte region, Italy. The results highlight that the
SMART model has a good performance in some warning zones:
A, B, and C (see Fig. 4). Detailed insights emerge by analyzing the
results of the performance evaluation carried out with this method
(see Figs. 4 and 5 and Table 6). The same considerations and
analyses could not be carried out with simpler methods (see the
“Comparison with simpler validation techniques” section). For
instance, the EDuMaP method allows for a more detailed assess-
ment of the seriousness of the errors and of the correctness of the
predictions. In the specific case of LEWS operating in Piemonte,
the EDuMaP method highlighted that the large majority of MA
and FA, in some warning zones, were not severe errors. As expect-
ed, the warning zones showing the highest performance differ
when different performance evaluations are carried out: A and C
using the EDuMaP method; D using the simpler validation tech-
nique (see the “Comparison with simpler validation techniques”
section). Finally, it is worth mentioning that, after being opera-
tional for almost 20 years, the SMART model will be soon replaced
by a new model, named SLOPS (Tiranti et al. 2019), that upgrades
some weakness aspects of the previous model. In the near future,
the performance of the SLOPS model in the early prediction of
landslides will be evaluated with an advanced performance model
and compared with the SMART model.
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