2,102 research outputs found
Recommended from our members
Fault location and analysis in transmission and distribution networks
Short-circuit faults are inevitable on transmission and distribution networks. In an effort to provide system operators with an accurate location estimate and reduce service restoration times, several impedance-based fault location algorithms have been developed for transmission and distribution networks. Each algorithm has specific input data requirements and make certain assumptions that may or may not hold true in a particular scenario. Identifying the best fault location approach, therefore, requires a thorough understanding of the working principle behind each algorithm. Moreover, impedance-based fault location algorithms require voltage and current phasors, captured by intelligent electronic devices (IEDs), to estimate the fault location. Unfortunately, voltage phasors are not always available due to operational constraints or equipment failure. Furthermore, impedance-based fault location algorithms assume a radial distribution feeder. With increased interconnection of distributed generators (DGs) to the feeder, this assumption is violated. DGs also contribute to the fault and severely compromise the accuracy of location estimates. In addition, the variability of certain DGs such as the fixed-speed wind turbine can alter fault current levels and result in relay misoperations. Finally, data recorded by IEDs during a fault contain a wealth of information and are prime for use in other applications that improve power system reliability. Based on the above background, the first objective of this dissertation is to present a comprehensive theory of impedance-based fault location algorithms. The contributions lie in clearly specifying the input data requirement of each algorithm and identifying their strengths and weaknesses. The following criteria are recommended for selecting the most suitable fault location algorithm: (a) data availability and (b) application scenario. The second objective is to develop fault location algorithms that use only the current to estimate the fault location. The simple but powerful algorithms allow system operators to locate faults even in the absence of voltage data. The third objective is to investigate the shortcomings of existing fault location algorithms when DGs are interconnected to the distribution feeder and develop an improved solution. A novel algorithm is proposed that require only the voltage and current phasors at the substation, is straightforward to implement, and is capable of locating all fault types. The fourth objective is to examine the effects of wind speed variation on the maximum and minimum fault current levels of a wind turbine and investigate the impact on relay settings. Contributions include developing an accurate time-domain model of a fixed-speed wind turbine with tower shadow and wind shear and verifying that the variation in wind speed does not violate relay settings calculated using the IEC 60909-0 Standard. The final objective is to exploit intelligent electronic device data for improving power system reliability. Contributions include validating the zero-sequence impedance of multi-terminal transmission lines with unsynchronized measurements, reconstructing the sequence of events, assessing relay performance, estimating the fault resistance, and verifying the accuracy of the system model. Overall, the research presented in this dissertation aims to describe the theory of impedance-based fault location, identify the sources of fault location error, propose solutions to overcome those error sources, and share lessons learned from analyzing intelligent electronic device data. The research is expected to reduce service downtime, prevent protection system misoperations, and improve power quality.Electrical and Computer Engineerin
ForceArm : ウェアラブル空気圧ゲル人工筋(PGM)を用いた上肢支援スーツ
広島大学(Hiroshima University)博士(工学)Doctor of Engineeringdoctora
PIETRO LAUREANO - Water conservation techniques in traditional human settlements
Pietro LaureanoWater conservation techniques in traditional human settlementsNew Delhi, India: COPAL Publishing Group, 2013. 336 p. 217 illustrations. Language: English. Softcover. 50 ISBN: 97881924733
A CLASSICAL AYURVEDA REVIEW ON HARIDRA
Curcuma longa Linn. is one of the important medicinal plants of the family Zingiberaceae. Being one among the constituent of Chandraprabha vati, Mahatikta ghrita, Haridra khand, Dashamulaarista etc, Haridra is very widely used in Ayurveda for the treatment of various disorders through its Rasapanchak. The name Haridra signifies its colour. In the Ayurvedic Formulary of India, Haridra is being used in various formulations. It is used as major ingredient in many formulations. It is highly valued from time immemorial because of its vast medicinal properties, traditional usage and cosmetic value. It is extensively used as Anti-inflammatory, antibacterial, antidiabetic, anthelminthic, hepatoprotective, hypolipidemic, antihistaminic, antifungal agent. Information from Ayurvedic texts shows its wide use in the diseases like Prameha, Krimi, Aruchi, Apachi, Pandu, Visa etc. The present article provides all necessary information regarding its classical references to have an overall view of Haridra in Ayurveda
Translational control of the interferon regulatory factor 2 mRNA by IRES element
Translational control represents an important mode of regulation of gene expression under stress conditions. We have studied the translation of interferon regulatory factor 2 (IRF2) mRNA, a negative regulator of transcription of interferon-stimulated genes and demonstrated the presence of internal ribosome entry site (IRES) element in the 5'UTR of IRF2 RNA. Various control experiments ruled out the contribution of leaky scanning, cryptic promoter activity or RNA splicing in the internal initiation of IRF2 RNA. It seems IRF2-IRES function is not sensitive to eIF4G cleavage, since its activity was only marginally affected in presence of Coxsackievirus 2A protease. Interferon treatment did not affect the IRF2-IRES activity or the protein level significantly. Also, in cells treated with tunicamycin [an agent causing endoplasmic reticulum (ER) stress], the IRF2-IRES activity and the protein levels were unaffected, although the cap-dependent translation was severely impaired. Analysis of the cellular protein binding with the IRF2-IRES suggests certain cellular factors, which might influence its function under stress conditions. Interestingly, partial knockdown of PTB protein significantly inhibited the IRF2-IRES function. Taken together, it appears that IRF2 gene expression during stress condition is controlled by the IRES element, which in turn influences the cellular response
INSTANT MESSAGING SPAM DETECTION IN LONG TERM EVOLUTION NETWORKS
The lack of efficient spam detection modules for packet data communication is resulting to increased threat exposure for the telecommunication network users and the service providers. In this thesis, we propose a novel approach to classify spam at the server side by intercepting packet-data communication among instant messaging applications. Spam detection is performed using machine learning techniques on packet headers and contents (if unencrypted) in two different phases: offline training and online classification. The contribution of this study is threefold. First, it identifies the scope of deploying a spam detection module in a state-of-the-art telecommunication architecture. Secondly, it compares the usefulness of various existing machine learning algorithms in order to intercept and classify data packets in near real-time communication of the instant messengers. Finally, it evaluates the accuracy and classification time of spam detection using our approach in a simulated environment of continuous packet data communication. Our research results are mainly generated by executing instances of a peer-to-peer instant messaging application prototype within a simulated Long Term Evolution (LTE) telecommunication network environment. This prototype is modeled and executed using OPNET network modeling and simulation tools. The research produces considerable knowledge on addressing unsolicited packet monitoring in instant messaging and similar applications
Effect of secondary decay on isoscaling: Results from the canonical thermodynamical model
The projectile fragmentation reactions using beams
at 140 MeV/n on targets are studied using the canonical
thermodynamical model coupled with an evaporation code. The isoscaling property
of the fragments produced is studied using both the primary and the secondary
fragments and it is observed that the secondary fragments also respect
isoscaling though the isoscaling parameters and changes. The
temperature needed to reproduce experimental data with the secondary fragments
is less than that needed with the primary ones. The canonical model coupled
with the evaporation code successfully explains the experimental data for
isoscaling for the projectile fragmentation reactions
Sequence-specific cleavage of hepatitis C virus RNA by DNAzymes: inhibition of viral RNA translation and replication
DNAzyme (Dz) molecules have been shown to be highly efficient inhibitors of virus replication. Hepatitis C virus RNA translation is mediated by an internal ribosome entry site (IRES) element located mostly in the 5' untranslated region (UTR), the mechanism of which is fundamentally different from cap-dependent translation of cellular mRNAs, and thus an attractive target for designing antiviral drugs. Inhibition of HCV IRES-mediated translation has drastic consequences for the replication of viral RNA as well. We have designed several Dzs, targeting different regions of HCV IRES specific for 1b and also sequences conserved across genotypes. The RNA cleavage and translation inhibitory activities of these molecules were tested in a cell-free system and in cell culture using transient transfections. The majority of Dzs efficiently inhibited HCV IRES-mediated translation. However, these Dz molecules did not show significant inhibition of coxsackievirus B3 IRES-mediated translation or cap-dependent translation of reporter gene, showing high level of specificity towards target RNA. Also, Northern blot hybridization analysis showed significant cleavage of HCV IRES by the Dz molecules in Huh7 cells transiently transfected with the HCV-FLuc monocistronic construct. Interestingly, one of the Dzs was more effective against genotype1b, whereas the other showed significant inhibition of viral RNA replication in Huh7 cells harbouring a HCV 2a monocistronic replicon. As expected, mutant-Dz failed to cleave RNA and inhibit HCV RNA translation, showing the specificity of inhibition. Taken together, these findings suggest that the Dz molecule can be used as selective and effective inhibitor of HCV RNA replication, which can be explored further for development of a potent therapeutic agent against HCV infection
Targeted delivery of hepatitis C virus-specific short hairpin RNA in mouse liver using Sendai virosomes
Internal ribosome entry site (IRES)-mediated translation of input viral RNA is the initial required step for the replication of the positive-stranded genome of hepatitis C virus (HCV). We have shown previously the importance of the GCAC sequence near the initiator AUG within the stem and loop IV (SLIV) region in mediating ribosome assembly on HCV RNA. Here, we demonstrate selective inhibition of HCV-IRES-mediated translation using short hairpin (sh)RNA targeting the same site within the HCV IRES. sh-SLIV showed significant inhibition of viral RNA replication in a human hepatocellular carcinoma (Huh7) cell line harbouring a HCV monocistronic replicon. More importantly, co-transfection of infectious HCV-H77s RNA and sh-SLIV in Huh7.5 cells successfully demonstrated a significant decrease in viral RNA in HCV cell culture. Additionally, we report, for the first time, the targeted delivery of sh-SLIV RNA into mice liver using Sendai virosomes and demonstrate selective inhibition of HCV-IRES-mediated translation. Results provide the proof of concept that Sendai virosomes could be used for the efficient delivery of shRNAs into liver tissue to block HCV replication
N-acetylglucosamine (GlcNAc-inducible gene GIG2 is a novel component of GlcNAc metabolism in Candida albicans
Candida albicans is an opportunistic fungal pathogen that resides in the human body as a commensal and can turn pathogenic when the host is immunocompromised. Adaptation of C. albicans to host niche-specific conditions is important for the establishment of pathogenicity, where the ability of C. albicans to utilize multiple carbon sources provides additional flexibility. One alternative sugar is N-acetylglucosamine (GlcNAc), which is now established as an important carbon source for many pathogens and can also act as a signaling molecule. Although GlcNAc catabolism has been well studied in many pathogens, the importance of several enzymes involved in the formation of metabolic intermediates still remains elusive. In this context, microarray analysis was carried out to investigate the transcriptional responses induced by GlcNAc under different conditions. A novel gene that was highly upregulated immediately following the GlcNAc catabolic genes was identified and was named GIG2 (GlcNAc-induced gene 2). This gene is regulated in a manner distinct from that of the GlcNAc-induced genes described previously in that GlcNAc metabolism is essential for its induction. Furthermore, this gene is involved in the metabolism of N-acetylneuraminate (sialic acid), a molecule equally important for initial host-pathogen recognition. Mutant cells showed a considerable decrease in fungal burden in mouse kidneys and were hypersensitive to oxidative stress conditions. Since GIG2 is also present in many other fungal and enterobacterial genomes, targeted inhibition of its activity would offer insight into the treatment of candidiasis and other fungal or enterobacterial infections
- …