18 research outputs found

    Spontaneous expectoration of pulmonary metastases in a child with osteogenic sarcoma

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148355/1/pbc27611.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148355/2/pbc27611_am.pd

    Isolated Limb Perfusion and External Beam Radiotherapy for Soft Tissue Sarcomas of the Extremity: Long-Term Effects on Normal Tissue According to the LENT-SOMA Scoring System

    Get PDF
    BACKGROUND: With the combined treatment procedure of isolated limb perfusion (ILP), delayed surgical resection and external beam radiotherapy (EBRT) for locally advanced soft tissue sarcomas (STS) of the extremities, limb salvage rates of more than 80% can be achieved. However, long-term damage to the healthy surrounding tissue cannot be prevented. We studied the late effects on the normal tissue using the LENT-SOMA scoring system. PATIENTS AND METHODS: A total of 32 patients-median age 47 (range 14-71) years-were treated for a locally advanced STS with ILP, surgical resection and often adjuvant 60-70 Gy EBRT. After a median follow-up of 88 (range 17-159) months, the patients were scored, using the LENT-SOMA scales, for the following late tissue damage: muscle/soft tissue, peripheral nerves, skin/subcutaneous tissue and vessels. RESULTS: According to the individual SOM parameters of the LENT-SOMA scales, 20 patients (63%) scored grade-3 toxicity on one or more separate items, reflecting severe symptoms with a negative impact on daily activities. Of these patients, 3 (9%) even scored grade-4 toxicity on some of the parameters, denoting irreversible functional damage necessitating major therapeutic intervention. CONCLUSIONS: In evaluating long-term morbidity after a combined treatment procedure for STS of the extremity, using modified LENT-SOMA scores, two-thirds of patients were found to have experienced serious late toxic effects

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology
    corecore