27 research outputs found

    Başkortostan Cumhuriyeti Toratau Jeoparki bal arısı (apis mellifera) popülasyonunda tergit rengi değişimi

    Get PDF
    A phenetic analysis of the honey bee population of the Toratau Geopark (Russia) was performed. Over 1,000 worker and drone bee samples were collected from 250 colonies in 59 apiaries on the territory of the Toratau Geopark (Gafuriysky, Ishimbaysky, Meleuzovsky, and Sterlitamaksky districts of the Republic of Bashkortostan). Six phenes in worker bees and four phenes in drone bees were recognized. The phenes E, 1R, 2R, and 3R in workers and Is, I, and O-gray in drones were predominant in the honey bee population of the Toratau Geopark, which were associated with subspecies of the Clineage. These phenes can be used as indicators of introgressive hybridization in the local dark European honey bee population. The phenes allow for quick evaluation of certain honey bee colonies hybridization states.Toratau Jeoparkı'ndaki (Rusya) bal arısı popülasyonunun fenetik analizi yapılmıştır. Toratau Jeoparkı topraklarındaki (Başkurdistan Cumhuriyeti'nin Gafuriysky, Ishimbaysky, Meleuzovsky ve Sterlitamaksky bölgeleri) 59 arılıktaki 250 koloniden 1.000'den fazla işçi ve erkek arı örneği toplanmıştır. İşçi arılarda altı fen ve erkek arılarda dört tergit rengi tespit edilmiştir. İşçilerde E, 1R, 2R ve 3R ve erkek arılarda Is, I ve O-gri fenleri Toratau Jeoparkı'ndaki bal arısı popülasyonunda baskındı ve bunlar C soyunun alt türleriyle ilişkiliydi. Bu tergit rengi, yerel koyu Avrupa bal arısı popülasyonunda içsel melezleşmenin göstergeleri olarak kullanılabilir. Bu tergit renkleri, belirli bal arısı kolonilerinin melezleşme durumlarının hızlı bir şekilde değerlendirilmesine olanak sağlamaktadır.The article was prepared with supporting the grant of the head of the Republic of Bashkortostan Radiy Khabirov, grant title "Study of the Bashkir bee population on the territory of the Toratau Geopark

    The use of omics technologies in creating LBP and postbiotics based on the Limosilactobacillus fermentum U-21

    Get PDF
    In recent years, there has been an increasing tendency to create drugs based on certain commensal bacteria of the human microbiota and their ingredients, primarily focusing on live biotherapeutics (LBPs) and postbiotics. The creation of such drugs, termed pharmacobiotics, necessitates an understanding of their mechanisms of action and the identification of pharmacologically active ingredients that determine their target properties. Typically, these are complexes of biologically active substances synthesized by specific strains, promoted as LBPs or postbiotics (including vesicles): proteins, enzymes, low molecular weight metabolites, small RNAs, etc. This study employs omics technologies, including genomics, proteomics, and metabolomics, to explore the potential of Limosilactobacillus fermentum U-21 for innovative LBP and postbiotic formulations targeting neuroinflammatory processes. Proteomic techniques identified and quantified proteins expressed by L. fermentum U-21, highlighting their functional attributes and potential applications. Key identified proteins include ATP-dependent Clp protease (ClpL), chaperone protein DnaK, protein GrpE, thioredoxin reductase, LysM peptidoglycan-binding domain-containing protein, and NlpC/P60 domain-containing protein, which have roles in disaggregase, antioxidant, and immunomodulatory activities. Metabolomic analysis provided insights into small-molecule metabolites produced during fermentation, revealing compounds with anti-neuroinflammatory activity. Significant metabolites produced by L. fermentum U-21 include GABA (γ-aminobutyric acid), niacin, aucubin, and scyllo-inositol. GABA was found to stabilize neuronal activity, potentially counteracting neurodegenerative processes. Niacin, essential for optimal nervous system function, was detected in vesicles and culture fluid, and it modulates cytokine production, maintaining immune homeostasis. Aucubin, an iridoid glycoside usually secreted by plants, was identified as having antioxidant properties, addressing issues of bioavailability for therapeutic use. Scyllo-inositol, identified in vesicles, acts as a chemical chaperone, reducing abnormal protein clumps linked to neurodegenerative diseases. These findings demonstrate the capability of L. fermentum U-21 to produce bioactive substances that could be harnessed in the development of pharmacobiotics for neurodegenerative diseases, contributing to their immunomodulatory, anti-neuroinflammatory, and neuromodulatory activities. Data of the HPLC-MS/MS analysis are available via ProteomeXchange with identifier PXD050857

    Mutations in Efflux Pump Rv1258c (Tap) Cause Resistance to Pyrazinamide, Isoniazid, and Streptomycin in M. tuberculosis

    Get PDF
    Although drug resistance in Mycobacterium tuberculosis is mainly caused by mutations in drug activating enzymes or drug targets, there is increasing interest in the possible role of efflux in causing drug resistance. Previously, efflux genes have been shown to be upregulated upon drug exposure or implicated in drug resistance in overexpression studies, but the role of mutations in efflux pumps identified in clinical isolates in causing drug resistance is unknown. Here we investigated the role of mutations in efflux pump Rv1258c (Tap) from clinical isolates in causing drug resistance in M. tuberculosis. We constructed point mutations V219A and S292L in Rv1258c in the chromosome of M. tuberculosis and the point mutations were confirmed by DNA sequencing. The susceptibility of the constructed M. tuberculosis Rv1258c mutants to different tuberculosis drugs was assessed using conventional drug susceptibility testing in 7H11 agar in the presence and absence of efflux pump inhibitor piperine. A C14-labeled PZA uptake experiment was performed to demonstrate higher efflux activity in the M. tuberculosis Rv1258c mutants. Interestingly, the V219A and S292L point mutations caused clinically relevant drug resistance to pyrazinamide (PZA), isoniazid (INH), and streptomycin (SM), but not to other drugs in M. tuberculosis. While V219A point mutation conferred low-level drug resistance, the S292L mutation caused a higher level of resistance. Efflux inhibitor piperine inhibited INH and PZA resistance in the S292L mutant but not in the V219A mutant. The S292L mutant had higher efflux activity for pyrazinoic acid (the active form of PZA) than the parent strain. We conclude that point mutations in the efflux pump Rv1258c in clinical isolates can confer clinically relevant drug resistance, including PZA resistance, and could explain some previously unaccounted drug resistance in clinical strains. Future studies need to take efflux mutations into consideration for improved detection of drug resistance in M. tuberculosis and address their role in affecting treatment outcome in vivo

    Employing toxin-antitoxin genome markers for identification of Bifidobacterium and Lactobacillus strains in human metagenomes

    Get PDF
    Recent research has indicated that in addition to the unique genotype each individual may also have a unique microbiota composition. Difference in microbiota composition may emerge from both its species and strain constituents. It is important to know the precise composition especially for the gut microbiota (GM), since it can contribute to the health assessment, personalized treatment, and disease prevention for individuals and groups (cohorts). The existing methods for species and strain composition in microbiota are not always precise and usually not so easy to use. Probiotic bacteria of the genus Bifidobacterium and Lactobacillus make an essential component of human GM. Previously we have shown that in certain Bifidobacterium and Lactobacillus species the RelBE and MazEF superfamily of toxin-antitoxin (TA) systems may be used as functional biomarkers to differentiate these groups of bacteria at the species and strain levels. We have composed a database of TA genes of these superfamily specific for all lactobacilli and bifidobacteria species with complete genome sequence and confirmed that in all Lactobacillus and Bifidobacterium species TA gene composition is species and strain specific. To analyze composition of species and strains of two bacteria genera, Bifidobacterium and Lactobacillus, in human GM we developed TAGMA (toxin antitoxin genes for metagenomes analyses) software based on polymorphism in TA genes. TAGMA was tested on gut metagenomic samples. The results of our analysis have shown that TAGMA can be used to characterize species and strains of Lactobacillus and Bifidobacterium in metagenomes

    Transcriptomic profile of mycobacterium smegmatis in response to an imidazo[1,2-b][1,2,4,5]tetrazine reveals its possible impact on iron metabolism

    Get PDF
    Tuberculosis (TB), caused by the Mycobacterium tuberculosis complex bacteria, is one of the most pressing health problems. The development of new drugs and new therapeutic regimens effective against the pathogen is one of the greatest challenges in the way of tuberculosis control. Imidazo[1,2-b][1,2,4,5]tetrazines have shown promising activity against M. tuberculosis and M. smegmatis strains. Mutations in MSMEG_1380 lead to mmpS5–mmpL5 operon overexpression, which provides M. smegmatis with efflux-mediated resistance to imidazo[1,2-b][1,2,4,5]tetrazines, but the exact mechanism of action of these compounds remains unknown. To assess the mode of action of imidazo[1,2-b][1,2,4,5]tetrazines, we analyzed the transcriptomic response of M. smegmatis to three different concentrations of 3a compound: 1/8×, 1/4×, and 1/2× MIC. Six groups of genes responsible for siderophore synthesis and transport were upregulated in a dose-dependent manner, while virtual docking revealed proteins involved in siderophore synthesis as possible targets for 3a

    Multi-level analysis of the gut-brain axis shows autism spectrum disorder-associated molecular and microbial profiles

    Get PDF
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by heterogeneous cognitive, behavioral and communication impairments. Disruption of the gut-brain axis (GBA) has been implicated in ASD although with limited reproducibility across studies. In this study, we developed a Bayesian differential ranking algorithm to identify ASD-associated molecular and taxa profiles across 10 cross-sectional microbiome datasets and 15 other datasets, including dietary patterns, metabolomics, cytokine profiles and human brain gene expression profiles. We found a functional architecture along the GBA that correlates with heterogeneity of ASD phenotypes, and it is characterized by ASD-associated amino acid, carbohydrate and lipid profiles predominantly encoded by microbial species in the genera Prevotella, Bifidobacterium, Desulfovibrio and Bacteroides and correlates with brain gene expression changes, restrictive dietary patterns and pro-inflammatory cytokine profiles. The functional architecture revealed in age-matched and sex-matched cohorts is not present in sibling-matched cohorts. We also show a strong association between temporal changes in microbiome composition and ASD phenotypes. In summary, we propose a framework to leverage multi-omic datasets from well-defined cohorts and investigate how the GBA influences ASD

    Repurposing Based Identification of Novel Inhibitors against MmpS5-MmpL5 Efflux Pump of <i>Mycobacterium smegmatis</i>: A Combined In Silico and In Vitro Study

    No full text
    In the current era of a pandemic, infections of COVID-19 and Tuberculosis (TB) enhance the detrimental effects of both diseases in suffering individuals. The resistance mechanisms evolving in Mycobacterium tuberculosis are limiting the efficiency of current therapeutic measures and pressurizing the stressed medical infrastructures. The bacterial efflux pumps enable the development of resistance against recently approved drugs such as bedaquiline and clofazimine. Consequently, the MmpS5-MmpL5 protein system was selected because of its role in efflux pumping of anti-TB drugs. The MmpS5-MmpL5 systems of Mycobacterium smegmatis were modelled and the virtual screening was performed using an ASINEX library of 5968 anti-bacterial compounds. The inhibitors with the highest binding affinities and QSAR based highest predicted inhibitory concentration were selected. The MmpS5-MmpL5 associated systems with BDE_26593610 and BDD_27860195 showed highest inhibitory parameters. These were subjected to 100 ns Molecular Dynamics simulations and provided the validation regarding the interaction studies. The in vitro studies demonstrated that the BDE_26593610 and BDD_27860195 can be considered as active inhibitors for M. smegmatis MmpS5-MmpL5. The outcomes of this study can be utilized in other experimentation aimed at drug design and discovery against the drug resistance strains of M. tuberculosis

    Human Gut Microbiota for Diagnosis and Treatment of Depression

    No full text
    Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota–gut–brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology
    corecore