13 research outputs found

    Working Paper 13-10 - Electric cars: Back to the future?

    Get PDF
    The main objective of the paper is to evaluate the development of the EV in a couple of selected energy scenarios, to address the influence climate policy and the presence of nuclear energy can have on this development and to estimate the impact of different EV penetration rates on electricity demand. Throughout the paper, it becomes clear that, in the absence of specific, dedicated EV public programmes, policies and measures aimed at curbing climate change spark off the penetration of EVs, especially on a longer time horizon (up to 2030): with post 2012 climate policy in place, the pure EV penetration in 2020 attains approximately 2% of the road vehicle fleet while in 2030, around 5% of the road vehicle fleet will be electrically propelled. In the time span up to 2020, the electricity consumption of the EVs is rather small: it ranges between 0.4 and 0.5 TWh. It isn't until 2025 and 2030 that EVs start to have a more visible impact on electricity consumption, stretching out between 1.2 and 1.4 TWh which represents approximately 1% of the total final electricity demand in 2030. Nuclear energy can then be a modest incentive for EVs through, assuming perfect market functioning, a decrease in electricity prices, hence triggering a slightly higher EV penetration. This paper assumes that no specific dedicated policies are in place to stimulate the upsurge of EVs. If policy makers decide they want to support and even intensify the expansion of EVs considering their positive impact on oil independency, climate change, transport efficiency and possibly job retention/creation, further policy measures (beyond climate policy) embedded in a long term national master plan are of utmost importance.Electric vehicles, Electricity demand, Climate change

    Working Paper 16-09 - EU Energy/Climate package and energy supply security in Belgium

    Get PDF
    In December 2008, the European Union adopted an integrated Energy/Climate package which steps up the Union's energy and climate policy ambitions to a new level and outlines how the effort will be shared among the Member States. This paper underlines the benefits of the EU Energy/Climate package in terms of energy supply security for Belgium, and more specifically the positive impacts the twin target – greenhouse gas emissions reduction and development of renewable energy sources – has on our dependence on fossil fuels. More specifically, the paper shows that substitutions in favour of renewables and a decrease in energy demand including the demand for electricity, which are the key responses of the Belgian energy system to the Energy/Climate package, not only allow to keep a balanced fuel mix in power  generation in 2020 but also lead to reduced overall fossil fuel imports relative to baseline projections. They also water down the trend towards an increased dependency on natural gas imports. Net imports of fossil fuels decrease by 9% in 2020 compared to baseline trends. Compared to the year 2005, they increase only slightly by 3%. The growth of natural gas imports is limited to 11% over the same period, against +21% in the baseline.Climate policy, Energy policy, Fossil fuels, Renewable energy sources, Supply security

    Working Paper 09-11 - Impact of the EU Climate-Energy Package on the Belgian energy system and economy - Update 2010 Study commissioned by the Belgian federal authority

    Get PDF
    By the end of 2008, the Federal Planning Bureau published the Working Paper 21-08. This Working Paper described and analysed the impact of the EU Climate-Energy Package on the Belgian energy system and economy. Since then, however, a lot has changed: the macroeconomic projections altered radically further to the financial and economic crisis, recent developments in the field of oil and gas supply and demand made fossil fuel price projections to be revised upwards and a number of energy efficiency measures were agreed upon and put into law in the course of 2008 and 2009. All this made the 2008 study less relevant whilst only 2 years old. This study report then updates the analysis reported in the Working Paper 21-08 and dedicates special attention to the stepping up to -30% for the EU greenhouse gas reduction target. It is based on the new economic and policy context and benefits from recent analyses of the European Commission conducted at EU level.Climate policy, Economic efficiency, Energy policy, Greenhouse gas emissions, Long-term energy projections, Macroeconomic impact

    Working Paper 21-08 - Impact of the EU Energy and Climate Package on the Belgian energy system and economy - Study commissioned by the Belgian federal and three regional authorities

    Get PDF
    In order to prepare for the negotiations on the EU Energy and Climate Package, the Federal Planning Bureau was asked by the Belgian federal and regional authorities to conduct a study on the impact of the January 2008 European Commission's proposal. In the course of this study, various scenarios were run. Next to a baseline, two main alternative scenarios were scrutinised: the 20/20 and 30/20 target scenarios, standing for an EU reduction of respectively 20% and 30% of GHG emissions in the year 2020 compared to the level of 1990 and a 20% mandatory EU share of RES in Gross Final Energy Demand in 2020. The report then includes an analysis of the impact of both scenarios on the Belgian energy system and economy as well as on GHG emissions.Energy policy, Climate policy, Economic efficiency, Long-term energy projections, Greenhouse gas emissions, Macroeconomic impact

    Middelen en vaardigheden

    No full text
    status: publishe

    Planning Paper 102 - Perspectives énergétiques pour la Belgique à l’horizon 2030 dans un contexte de changement climatique

    No full text
    This thesis focuses on the development of a system in which a team of heterogeneous mobile robots can cooperate to perform a wide range of tasks. In order that a group of heterogeneous robots can cooperate among them, one of the most important parts to develop is the creation of an architecture which gives support for the cooperation. This architecture is developed by means of embedding agents and interfacing agent code with native low-level code. It also addresses the implementation of resource sharing among the whole group of robots, that is, the robots can borrow capabilities from each-other.In order to validate this architecture, some cooperative applications have been implemented. The first one is an application where a group of robots must cooperate in order to safely navigate through an unknown environment. One robot with camera calculates the optical flow values from the images, and from these values calculates the "time to contact" values. This information is shared among the team so that any robot can navigate without colliding with the obstacles.The second cooperative application consists of enabling the team of heterogeneous robots to create a certain formation and navigate maintaining this formation. The application consists of two parts or stages. The first one is the creation of the formation, where a robot with the camera can detect where the rest of the robots are in the environment and indicates to them which is their initial position in the formation. In the second stage the robots must be able to navigate through an environment following the path that the robot with the laser indicates. Due to the odometry errors of the robots, the camera of one of the robots is used so that robots which lose their correct position in the formation can re-align themselves. Finally, in an attempt to facilitate access to the robots of the team and to the information that their accessories provide, a system for the teleoperation of the team has been implemented. This system can be used for teaching robotics or to facilitate the tasks of programming and debugging in the research tasks

    Conséquences énergétiques et sectorielles à long terme d'une contrainte sur les émissions de CO2 en Belgique

    No full text
    Q4 ; C6.climate change, long term energy perspectives, energy consumption, CO2 emissions
    corecore